重調和型 Ren-Wei 問題の最小エネルギー解の消近挙動について

高橋太 (Futoshi Takahashi)（大阪市立大学大学院理学研究科）

\(\Omega \) を \(\mathbb{R}^4 \) の有界領域、\(p > 1 \) とする。この講演では次の 4 階構造型境界値問題

\[
(E_p) \begin{cases}
\Delta^2 u = u^p & \text{in } \Omega \subset \mathbb{R}^4, \\
u > 0 & \text{in } \Omega, \\
u|_{\partial \Omega} = \Delta u|_{\partial \Omega} = 0
\end{cases}
\]

の最小エネルギー解について、特に \(p \to \infty \) での消近挙動を考察する。ここで \(\Delta^2 = \Delta \Delta \) は \(\mathbb{R}^4 \) の重調和作用素で、(\(E_p \)) の境界条件は Navier 境界条件と呼ばれる。Ren と Wei は 2 次元有界領域での半線形構造型境界値問題: \(-\Delta u = u^p, \ u > 0 \ \text{in } \Omega \subset \mathbb{R}^2, \ p > 1, \ u|_{\partial \Omega} = 0 \) の最小エネルギー解の \(p \to \infty \) のときの消近挙動についていくつかの結果を示している ([1] [2]) が、(\(E_p \)) は Ren-Wei の取り扱った問題の自然な「高次元化」と考えられる。

(\(E_p \)) の最小エネルギー解 \(u_p \) とは、次の制約条件つき最小化問題

\[
C^2_p := \inf \left\{ \int_{\Omega} |\Delta u|^2 \, dx : u \in H^2 \cap H^1_0(\Omega), \|u\|_{p+1} = 1 \right\}
\]

の（正値）最小化元 \(u_p \) から \(u_p = C_p^{p-1} y_p \) として得られるもので、変分法的に最も自然な解である。

Ren-Wei と同様に、次の結果が得られる。

Theorem 1. 定数 \(C_1, C_2 \) が存在して、十分大きな任意の \(p \) に対して次が成り立つ。

\[
0 < C_1 < \|u_p\|_{L^\infty(\Omega)} < C_2 < \infty
\]

つまり、最小エネルギー解自身は \(p \to \infty \) のときに爆発することも 0 につぶれることもしない。

証明では、D. R. Adams の高階 Trudinger-Moser 不等式を用いて、\(C_p \) の \(p \to \infty \) のときの消近挙動

\[
\lim_{p \to \infty} pC^2_p = 64\pi^2 e
\]

を得ることが議論の出発点となる。

領域に凸性を仮定するとき、Theorem 1 は次のように改良される。

Theorem 2. \(\Omega \subset \mathbb{R}^2 \) を滑らかな有界凸領域とする。このとき (\(E_p \)) の最小エネルギー解 \(u_p \) に対して次が成り立つ。

\[
1 \leq \liminf_{p \to \infty} \|u_p\|_{L^\infty(\Omega)} \leq \limsup_{p \to \infty} \|u_p\|_{L^\infty(\Omega)} \leq \sqrt{e}.
\]
証明には Adimurthi-Grossi による blow-up argument と C.S Lin による極限方程式の解の分類定理を利用する。
この結果を用いて、領域が凸の場合には \((E_p)\) の最小エネルギー解の領域内部での 1 点凝聚現象を示すことができる。
より詳しく述べるためにいくつかの定義をする。\(w_p := u_p/(\int_{\Omega} u_p^p dx)\) とおく。
\(\{u_p\}\) の部分列 \(\{u_{p_n}\}\) に対して、\(\{u_{p_n}\}\) の爆発点集合 \(S\) を通常のようにある部分列 \(w_{p_n'}\) に対して \(x_n \to x, w_{p_n'}(x_n) \to \infty\) となる \(\{x_n\} \subset \Omega\) が存在する \(x \in \Omega\) の集合とする。
さらに \(\{u_p\}\) の peak point を、その点の任意の近傍において \(u_p\) が \(p \to \infty\) のときに \(L^\infty\) ノルムの意味で消えない点として定義する。Theorem 1 および \(\int_{\Omega} u_p^p dx = \Omega(1/p) (p \to \infty)\) であることから、\(\{u_{p_n}\}\) の最大点 \(\{x_{p_n}\}\) の任意の集積点は \(\{u_{p_n}\}\) の peak point であり、また \(\{u_{p_n}\}\) の爆発点集合に含まれる事がわかる。

Theorem 3. \(\Omega \subset \mathbb{R}^4\) を滑らかな有界凸領域とする。このとき \(w_p\) の任意の部分列 \(u_{p_n} (p_n \to \infty)\) に対して、ある部分列（再び \(w_{p_n}\) と記す）が存在してこの部分列の爆発点集合 \(S = \{x_0\}, x_0 \in \Omega\) となる。
さらに次が成り立つ。

1. \(\Omega\) の Radon 測度の弱収束の意味で
 \[
 \frac{u_{p_n}(x)}{\int_{\Omega} u_{p_n}^p dx} \to \delta_{x_0}
 \]
 が成り立つ。

2. \(u_{p_n} \to G_4(\cdot, x_0)\) in \(C_{\text{loc}}(\bar{\Omega} \setminus \{x_0\})\) が成り立つ。ここに \(G_4(x, y)\) は Navier
 境界条件つき \(\Delta^2\) の Green 関数である。

3. 爆発点 \(x_0\) は \(\Omega\) 上の（負値）Robin 関数 \(R_4(x) = \left[G_4(x, y) + \frac{1}{8\pi} \log |x-y| \right]_{y=x}\)
 の臨界点となる。

参考文献

