1951ǯ¤Ë½ÐÈǤµ¤ì¤¿Åý·×´Ø·¸½ñ³µ´Ñ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊÎÓÃθÊÉ×¡Ë 04¡Ý117
Àï¸å¤Ë½ÐÈǤµ¤ì¤¿ÊÐÈùʬÊýÄø¼°¤Ë´Ø¤¹¤ë½ñʪ¡¡¡¡¡¡ ¡¡¡ÊµÈÅĹ̺î¡Ë 10¡Ý263
ÀÖÃÓ¹°¼¡¡¦ÃæÀîÅì°ìϺ¡§¥À¥¤¥Ê¥ß¥Ã¥¯¥·¥¹¥Æ¥à¤Î¡¡¡¡¡¡¡¡Åý·×Ū²òÀϤÈÀ©¸æ¡ÊÆ£°æ¸÷¾¼¡Ë 29¡Ý186
½©·î¹¯Éס¦ÎëÌÚÄÌÉס§¹âÅùÂå¿ô³Øµ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê¶Ì²Ï¹±É×¡Ë 05¡Ý255
½©·î¹¯Éס§Ä´ÏÂÀÑʬÏÀ¡Ê°ì¾¾¡¡¿®¡Ë······· 08¡Ý060
½©·î¹¯Éס§íζáÂå¿ô³Ø¤ÎŸ˾¡ÊÈӹ⡡ÌÐ¡Ë 26¡Ý288
ÀõÌî·¼»°¡§´ÄÏÀµÚ¥¤¥Ç¥¢¥ëÏÀ¡ÊÃæ»³¡¡Àµ¡Ë 02¡Ý375
ÀõÌî·¼»°¡¦±ÊÈø¡¡ÈÆ¡§·²ÏÀ¡ÊÈÓÄÍ·ò»°¡Ë· 17¡Ý178
Åì²°¸ÞϺ¡§Ã±½ã´Ä¤ÎÂå¿ôŪÍýÏÀ¡ÊÀõÌî·¼»°¡Ë 04¡Ý053
ÂΩÀµµ×¡§Èùʬ°ÌÁê´ö²¿³Ø¡Ê¾®µÜ¹î¹°¡Ë· 29¡Ý177
Àаæ¸ãϺ¡§¼Â¸³·×²èË¡¡¿ÇÛÃÖ¤ÎÍýÏÀ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê·Ê»³»°Ê¿¡Ë 26¡Ý276
Àи¶¡¡ÈË¡§´ö²¿³Ø³µÏÀ¡ÊÅÄÂå²Å¹¨¡Ë······· 29¡Ý184
Àô¡¡¿®°ì¡§°ìÈ̵é¿ôÏÀ¡Ê²ÏÅÄεÉס˷······ 01¡Ý351
°ËÆ£¡¡¾º¡§Í¸Â·²ÏÀ¡Ê±ÊÈø¡¡Èơ˷········· 26¡Ý377
°ËÆ£À¶»°¡§¥ë¥Ù¡¼¥°ÀÑʬÆþÌç¡Ê°ì¾¾¡¡¿®¡Ë 15¡Ý251
°ËÆ£À¶»°¡§ÊÐÈùʬÊýÄø¼°¡Ê¼¾¾¼÷±ä¡Ë···· 26¡Ý084
°ð³À¡¡Éð¡§ÅÀ½¸¹çÏÀ¡ÊĹÅĽá°ì¡Ë·········· 03¡Ý120
°ðÍձɼ¡¡§Âå¿ôÈ¡¿ô¤ÎÂå¿ôŪÍýÏÀ¡Ê¶Ì²Ï¹±É×¡Ë 02¡Ý377
°æ¾åÀµÍº¡§¥Ý¥Æ¥ó¥·¥ã¥ëÏÀ¡Ê¾®¾¾Í¦ºî¡Ë· 05¡Ý189
°æ¾åÀµÍº¡§±þÍÑÈ¡¿ôÏÀ¡Ê±óÌÚ¹¬À®¡Ë······· 10¡Ý053
º£µÈÍΰ졦ë¸ý²íɧ¡§¥¿¥¤¥Ò¥ß¥å¥é¡¼¶õ´ÖÏÀ¡¡¡¡¡¡¡¡¡¡¡Ê»Ö²ì·¼À®¡Ë 42¡Ý282
×½±Ê¾»µÈ¡§´ö²¿³Ø½øÀâ¡Ê´ä¼¡¡Îþ¡Ë······· 25¡Ý094
×½±Ê¾»µÈ¡§¿ôÏÀ¡Ê²ÏÅķɵÁ¡Ë················ 22¡Ý237
×½±Ê¾»µÈ¡¦¾®Ê¿Ë®É§¡§¸½Âå¿ô³Ø³µÀⵡ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê¿ù±º¸÷É×¡Ë 20¡Ý185
×½±Ê¾»µÈ¡¦Ê¿ÌîÅ´ÂÀϺ¡§¼Í±Æ´ö²¿³Ø¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê´äËÙĹ·Ä¡Ë 11¡Ý253
´äß··òµÈ¡§Âå¿ôÈ¡¿ôÏÀ¡Ê°ðÍձɼ¡¡Ë······· 04¡Ý116
´äÇȹֺ¡ƴðÁÿô³Ø¡Ç¡Ê¾®Ã«âðì¡Ë······· 35¡Ý278
×½±Ê¾»µÈ¡¦×½±Ê·ò°ì¡§½¸¹ç¤È°ÌÁê¡Ê¿¹¡¡µ£¡Ë 35¡Ý278
¾®Ê¿Ë®É§¡§²òÀÏÆþÌ絡Á¸¡Ê³Þ¸¶â«»Ê¡Ë 35¡Ý279
Æ£ÅÄ¡¡¹¨¡§²òÀÏÆþÌ繡ʳ޸¶â«»Ê¡Ë···· 35¡Ý279
µÈÅĹ̺¬ÅÙ¤ÈÀÑʬ¡Ê»³ºêÂÙϺ¡Ë···· 35¡Ý280
¾®Ê¿Ë®É§¡§Ê£ÁDzòÀÏ¡ÊÆ£²Èζͺ¡Ë······· 35¡Ý280
°ËÆ£¡¡À¶¡§³ÎΨÏÀ¡ÊµÜËܽ¡¼Â¡Ë·········· 35¡Ý281
ã·Æ£Íø×½¡§¾ïÈùʬÊýÄø¼°µ¡ÊµÜÉðÄçÉ×¡Ë 35¡Ý282
ÌÚ¼½Ó˼¡§¾ïÈùʬÊýÄø¼°¶¡ÊµÜÉðÄçÉ×¡Ë 35¡Ý282
ÂçÅçÍøÍº¡¦¾®¾¾É§»°Ïº¡§1³¬ÊÐÈùʬÊýÄø¼° ¡¡¡Ê°Ëã±Ùϯ¡Ë 35¡Ý284
Æ£ÅÄ¡¡¹¨¡¦¸¤°æÅ´Ïº¡¦ÃÓÉô¹¸À¸¡¦¹â¸«±ÏϺ¡§ ¿ôÍýʪÍý¤Ë¸½¤ï¤ì¤ëÊÐÈùʬÊýÄø¼° ¡ÊÀõÌî¡¡·é¡Ë·············································· 35¡Ý284
ÁýÅĵ×Ìï¡§ÈóÀþ·¿Âʱ߷¿ÊýÄø¼°¡ÊÅçÁÒµªÉ×¡Ë 35¡Ý285
´äËÙĹ·Ä¡§¥Ù¥¯¥È¥ë²òÀÏ¡ÊÅÄÂå²Å¹¨¡Ë···· 15¡Ý249
´ä¼¡¡Îþ¡§Â«ÏÀ¡Ê×½±Ê¾»µÈ¡Ë················ 01¡Ý349
¾åÌî·ò¼¤¡§Âå¿ô´ö²¿ÆþÌç¡ÊÀ¶¿åͦÆó¡Ë···· 48¡Ý209
¾åÌî·ò¼¤¡¦»Ö²ì¹ÀÆó¡¦º½ÅÄÍø°ìÊÔ½¸¡§
¿ô³Ø¤Î¤¿¤Î¤·¤ß¡Ê¿¿Å罨¹Ô¡Ë ÄÌ2´¬4¹æ¡Ý099
¾åÅÄůÀ¸¡¦Ã«¸ý²íɧ¡¦½ôß·½Ó²ð¡§Ê£ÁÇÎϳطϽøÀâ¡¡¡¡¡¡—–¥Õ¥é¥¯¥¿¥ë¤ÈÊ£ÁDzòÀÏ—–¡ÊÌÚºäÀµ»Ë¡Ë 50¡Ý332
±§ÌîÍøÍº¡§·×»»µ¡¤Î¤¿¤á¤Î¿ôÃÍ·×»»
¡Ê¹âÅÄ¡¡¾¡¡Ë 16¡Ý184
±§ÌîÍøÍºÊÔ¡§¿ôÍýÅý·×³Ø±é½¬¡Ê´Ý»³µ·»ÍϺ¡Ë 09¡Ý059
±ºÀî¡¡È¥¡§ÊÑʬˡ¤ÈĴϼÌÁü¡ÊÂç¿ÎÅĵÁ͵¡Ë 45¡Ý184
¹¾ÂôÍΡ¤¿·°æÄ«Íº¡§¡¡¡¡¡¡¡¡¡¡¡¡
¡¡¾ì¤ÎºÇ»ÒÏÀ¤ÈÅý·×ÎϳءʰËÅì·Ã°ì¡Ë 41¡Ý276
ÂçÅç¡¡¾¡¡§·²ÏÀ¡Ê±ÊÈø¡¡Èơ˷··············· 07¡Ý055
Â翹±Ñ¼ù¡§ÎϳØÅª¤ÊÈùʬ´ö²¿¡Ê¹â¶¶¹±Ïº¡Ë 34¡Ý279
²¬·éÀèÀ¸°ä¹Æ½¸1¡Á7¡ÊÌÚ¼°êͺ¡Ë········ 36¡Ý377
²¬ÅÄÎÉÃΡ§µé¿ô³µÏÀ¡Ê²ÏÅÄεÉס˷········· 04¡Ý192
²¬Â¼¡¡Çî¡§ÈùʬÊýÄø¼°½øÀâ¡ÊÊ¡¸¶Ëþ½§Íº¡Ë 03¡Ý192
²¬ËÜÀ¶¶¿¡§Åù¼Á¶õ´Ö¾å¤Î²òÀϳءÊÊö¼¾¡¹°¡Ë 41¡Ý185
¾®ß·¡¡Ëþ¡§¶áÂåÈ¡¿ôÏÀµ¡Ê¸ÍÅÄĪÌС˷··· 29¡Ý181
¾®ÅÄÃéͺ¡§ÆÌÂΤÈÂå¿ô´ö²¿³Ø¡ÊϲÀɧ¡Ë 39¡Ý183
Íî¹çÂî»ÍϺ¡¦Ìî¸ý½á¼¡Ïº¡§´ö²¿³ØÅª´Ø¿ôÏÀ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊÆ£ËÜó¹§¡Ë 37¡Ý376
Çð¸¶Àµ¼ù¡¦²Ï¹çδ͵¡¦ÌÚ¼ãͺ¡§Âå¿ô²òÀϳؤΠ´ðÁáÊÊÒ²¬À¶¿Ã¡¤Âç°¤µ×½Ó§¡Ë 36¡Ý282
²ÃÆ£ÉÒÉס§È¡¿ô¶õ´ÖÏÀ¡Ê°ËÆ£À¶»°¡Ë······· 10¡Ý192
²Ãƣʿº¸¥¨Ìç¡§Ï»»¥Î¸¦µæ¡ÊºÙ°æ¡¡Þʡ˷ 07¡Ý054
²Ãƣʿº¸¥¨Ìç¡§Ï»»¤Î¸¦µæ, »¨ÏÀ¶¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊºÙ°æ¡¡ÞÊ¡Ë 09¡Ý258
²Ãƣʿº¸±ÒÌç¡§Ï»»¤Î¸¦µæ¡¤Êä°ä1¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê°ì¾¾¡¡¿®¡Ë 21¡Ý072
²Ãƣʿº¸±ÒÌç¡§¹¾¸ÍËö´ü¤ÎÂç¿ô³Ø¼Ô¡¤ÏÂÅÄÇ«¤Î¶ÈÀÓ¡¡¡¡¡¡¡¡¡Ê°ì¾¾¡¡¿®¡Ë 21¡Ý072
²Ãƣʿº¸±ÒÌç¡§°ÂÅ羱ߤζÈÀӡʰ쾾¡¡¿®¡Ë 24¡Ý252
¶â»Ò¡¡¹¸¡§Ä¶È¡¿ôÆþÌç (¾å)¡¤(²¼)¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊÊÒ²¬À¶¿Ã¡¤Âç°¤µ×½Ó§¡Ë 36¡Ý282
µµÃ«½Ó»Ê¡§½éÅù²òÀϳص¡ÊÅļÆóϺ¡Ë···· 05¡Ý191
´¢²°É𾼡§²óµ¢Ê¬ÀϤÎÍýÏÀ¡ÊÆ£±Û¹¯½Ë¡Ë· 33¡Ý374
Àîµ×Êݾ¡Éס§ÊÑ´¹·²ÏÀ¡Ê¿ÀÅç˧Àë¡Ë······· 40¡Ý092
²ÏÅÄζÉס§¥Õ¡¼¥ê¥¨²òÀϤȳÎΨÏÀ¡Ê°ËÆ£¡¡À¶¡Ë 01¡Ý143
²ÏÅķɵÁ¡§³ÎΨÏÀ¡Ê°ËÆ£¡¡À¶¡Ë············· 02¡Ý271
²ÏÅķɵÁ¡§ÀÑʬÏÀ¡ÊµµÃ«½Ó»Ê¡Ë············· 03¡Ý063
²ÏÅķɵÁ¡§Èùʬ¼°ÏÀ¡ÊµÈÅĹ̺î¡Ë·········· 04¡Ý053
²ÏÅķɵÁ¡¦»°Â¼À¬Íº¡§¸½Âå¿ô³Ø³µÀâ¶
¡ÊÊÔ½¸Éô¡Ë 17¡Ý123
²ÏÅķɵÁ¡¦ÃÝÆâ³°»Ë¡§°ÌÁê´ö²¿³Ø¡ÊÃæ²¬¡¡Ì¡Ë 05¡Ý120
²ÏÆâÌÀÉ×ÊÔ¡§·ë¤ÓÌÜÍýÏÀ¡Ê¼¿ùË®Ãˡ˷··· 44¡Ý091
ËÌÀîÉÒÃË¡¦»°Î±»°ÀéÃË¡§¼Â¸³·×²èÍ×°øÇÛÃÖɽ¡¡¡¡¡¡¡¡¡¡¡Ê¿¹¸ýÈ˰ì¡Ë 06¡Ý182
Áð¾ì¸øË®¡§¹ÔÎóÆÃÏÀ¡Êëºê½ÓÇ·¡Ë·········· 36¡Ý087
Æï¡¡¹¬ÃË¡§È¡¿ôÏÀ¡Ê¹õÅÄ¡¡Àµ¡Ë············· 28¡Ý185
¹ñÂôÀ¶Åµ¡§¶áÂå³ÎΨÏÀ¡Ê°ËÆ£¡¡À¶¡Ë······· 05¡Ý121
¹ñÅÄ¡¡´²¡§³ÎΨ²áÄø¤Î¿äÄê¡ÊÀ¾Èø¿¿´î»Ò¡Ë 32¡Ý189
¸ùÎ϶âÆóϺ¡§²òÀÏÍ×ÏÀ¡ÊµµÃ«½Ó»Ê¡Ë······· 05¡Ý054
·§¥Î¶¿½à¡§µ¼ÈùʬºîÍÑÁǡʰæÀî¡¡Ëþ¡Ë···· 35¡Ý274
¹õÅÄÀ®¾¡¡¦µ×ÊÝÅÄÉÙͺ¡§À°¿ôÏÀ¡Ê°ðÍձɼ¡¡Ë 15¡Ý246
²ÏÌî°Ë»°Ïº¡§°ÌÁê¶õ´ÖÏÀ¡Ê¿¹Åĵª°ì¡Ë···· 07¡Ý056
¾®ÅçÄêµÈ¡§Â¿³Ñ·Á¤Î¸½Âå´ö²¿³Ø¡ÊÏÂÅľ»¾¼¡Ë 48¡Ý093
¾®ÎÓ¹§¼¡Ïº¡¦¹â¶¶Àµ»Ò¡§¥ª¡¼¥È¥Þ¥È¥ó¤ÎÍýÏÀ¡¡¡¡¡¡¡¡¡¡¡Ê¾®Ìî´²Úò¡Ë 37¡Ý375
¾®ÎÓ¾¼¼·¡§¶ÊÀþ¤È¶ÊÌ̤ÎÈùʬ´ö²¿¡Ê¿¹ËÜÌÀɧ¡Ë 36¡Ý083
¾®ÎÓ¾¼¼·¡§¶ÊÀþ¤È¶ÊÌ̤ÎÈùʬ´ö²¿¡Ê²þÄûÈǡˡ¡¡¡¡¡¡¡¡¡¡¡¡Ê»³Åĸ÷ÂÀϺ¡Ë 50¡Ý214
¾®ÎÓ¾¼¼·¡§Àܳ¤ÎÈùʬ´ö²¿¤È¥²¡¼¥¸ÍýÏÀ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊÃæÅç¡¡·¼¡Ë 42¡Ý183
¾®¾¾¡¦Ã沬¡¦¿û¸¶¡§°ÌÁê´ö²¿³Øµ¡ÊÎëÌÚ¼£É×¡Ë 24¡Ý343
¾®¾¾½æÏº¡§°ÌÁê¶õ´ÖÏÀ¡Ê°ð³À¡¡Éð¡Ë······· 01¡Ý230
¾®¾¾Í¦ºî¡§°ìÈÌÈ¡¿ôÏÀ¡Ê°æ¾åÀµÍº¡Ë······· 06¡Ý183
¶áÆ£¼¡Ïº¡§ÀÑʬÊýÄø¼°¡Ê¶âÂô¡¡Î´¡Ë······· 07¡Ý183
¶áÆ£´ðµÈ¡§¼ÂÈ¡¿ôÏÀ¡Ê¼ÅÄ¡¡Á´¡Ë·········· 22¡Ý077
¶áÆ£´ðµÈ¡§¼ÂÈ¡¿ôÏÀ±é½¬¡Ê¼ÅÄ¡¡Á´¡Ë···· 22¡Ý078
¶áÆ£Íΰ¥²¡¼¥Ç¥ë¡Æ¿ô³Ø´ðÁÃÏÀ¡Ç
¡Ê°ËÆ£¡¡À¶¡Ë 01¡Ý047
¶áÆ£Íΰ´ö²¿³Ø»×ÁÛ»Ë¡Ê¶áÆ£´ðµÈ¡Ë···· 01¡Ý142
ã·Æ£Íø×½¡§°ÌÁêÎϳءʱº¡¡ÂÀϺ¡Ë·········· 26¡Ý180
º´¡¹ÌÚ½ÅÉס§¶¦·ÁÀܳ´ö²¿³Ø¡ÊËÜÉô¡¡¶Ñ¡Ë 02¡Ý084
º´¡¹ÌÚ½ÅÉס§Èùʬ´ö²¿³Ø¡½Âç°èŪ¹Í»¡¤ò Ãæ¿´¤È¤·¤Æ¡½¡Ê°ì¾¾¡¡¿®¡Ë 13¡Ý121
º´Éð°ìϺ¡§¹ÔÎó¤È¹ÔÎó¼°¡Ê¿¹¡¡µ£¡Ë······· 15¡Ý248
º´Æ£·ò°ì¡§²ÃË¡²áÄø¡Ê¿ÀÅÄ¡¡¸î¡Ë·········· 46¡Ý075
»Ö²ì¹ÀÆó¡§¸½Âå¿ô³Ø¤Ø¤Î¾·ÂÔ¡ÊÂ翹±Ñ¼ù¡Ë 34¡Ý091
½ÂëÂÙδ¡§Ê£ÁÇÎΰè¤Ë¤ª¤±¤ëÀþ·¿¾ïÈùʬÊýÄø¼°¡¡¡¡¡¡¡¡¡Ê¹âÌî¶³°ì¡Ë 33¡Ý085
ÅçÆâ¹ä°ì¡§¿ô³Ø¤Î´ðÁáʴ伡¡Îþ¡Ë······· 28¡Ý381
À¶¿åÎÉ°ì¡§Ãæ¿´¶Ë¸ÂÄêÍý¡ÊÃÝÆâ¡¡·¼¡Ë···· 30¡Ý090
ÀµÅÄ·ú¼¡Ïº¡§Âå¿ô³ØÄÌÏÀ¡ÊÃæ»³¡¡Àµ¡Ë···· 01¡Ý229
ÀµÅÄ·ú¼¡Ïº¡¦ÀõÌî·¼»°¡§Âå¿ô³Øµ¡Ê½©·î¹¯É×¡Ë 05¡Ý254
Çò´ä¸¬°ì¡§ÎϳطϤÎÍýÏÀ¡ÊÃӾ嵹¹°¡Ë···· 28¡Ý179
¿ÀÊÝÆ»Éס§Î̻ҷ²¤È¥ä¥ó¡¦¥Ð¥¯¥¹¥¿¡¼ÊýÄø¼°¡¡¡¡¡¡¡¡¡¡¡ÊÃæ¿À¾Í¿Ã¡Ë 46¡Ý362
¿áÅÄ¿®Ç·¡§¶áÂåÈ¡¿ôÏÀ¶¡Ê¼ò°æ¡¡Îɡ˷··· 30¡Ý287
Ëö¹Ë½ú°ì¡§¿ôÍý¤ÈÏÀÍý¡Ê¹õÅÄÀ®¾¡¡Ë······· 01¡Ý144
Ëö¹Ë½ú°ì¡§¿ô³Ø¤Î´ðÁáʹõÅÄÀ®¾¡¡Ë······· 04¡Ý255
¿ù¸¶Àµðý¡¦¼¼Åİìͺ¡§¿ôÃÍ·×»»Ë¡¤Î¿ôÍý¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê¼Ä¸¶Ç½ºà¡Ë 48¡Ý211
ÎëÌÚÄÌÉס§·²ÏÀ(¾å)¡¤(²¼)¡Ê°ËÆ£¡¡¾º¡Ë··· 37¡Ý185
ÀÖ¡¡ÀÝÌ顦ƣÀîÍΰìϺ¡§ÅŻҷ׻»µ¡ÆþÌç¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊÌîºê¾¼¹°¡Ë 19¡Ý185
ÃÝÆâ³°»Ë¡§¿ô³Ø´ðÁÃÏÀ¡ÊÁ°¸¶¾¼Æó¡Ë······· 09¡Ý195
ÃÝÆâ³°»Ë¡§¿ôÍýÏÀÍý³Ø¡Ê¹À¥¡¡·ò¡Ë······· 27¡Ý282
ÃÝÆâ³°»Ë¡§ÁØ¡¦·÷¡¦¥È¥Ý¥¹¡ÊÎÓ¡¡¿¸¡Ë···· 31¡Ý273
ÃÝÆâ³°»Ë¡§Ä¾´Ñ¼çµÁŪ½¸¹çÏÀ¡ÊÁÒÅÄÎáÆóϯ¡Ë 36¡Ý184
ÃÝÆâ³°»Ë¡§¾ÚÌÀ¤È·×»»Î̡ʵÆÃÓ¡¡À¿¡Ë···· 50¡Ý327
ÃÝÆâ¡¡·¼¡§Åý·×Ū¿äÄê¤ÎÁ²¶áÍýÏÀ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Êºå»ÔÂç¿ôÍýÅý·×¥¼¥ß¥Ê¡¼¥ë¡Ë 28¡Ý281
ÃÝÆâ¡¡¾¡¡§¸½Âå¤Îµå´Ø¿ô¡Êº½ÅÄÍø°ì¡Ë···· 38¡Ý189
ÃݺêÀµÆ»¡§ºîÍÑÁǴĤι½Â¤¡Ê¸æ±àÀ¸Á±¾°¡Ë 36¡Ý378
ÅÄºê¡¡Ãæ¡§¹¾¸Í»þÂå¤Î¿ô³Ø¡Ê¿ù±º¸÷Éס˷ 39¡Ý373
ÅÄÅç°ìϺ¡§¿ô³Ø²òÀÏÆþÌç¡ÊµµÃ«½Ó»Ê¡Ë···· 01¡Ý048
Ω²Ö½Ó°ì¡§¥ê¡¼¥Þ¥ó´ö²¿³Ø¡¨¥ê¡¼¥Þ¥ó´ö²¿³Ø±é½¬¡¡¡¡¡¡¡ÊÀи¶¡¡ÈË¡Ë 21¡Ý233
äÇϿɧ¡§°ÌÁê·²¤ÎÁÐÂÐÄêÍý¡ÊݯËÜÆÆ»Ê¡Ë 48¡Ý100
ÅÄÃæ½Ó°ì¡¦°Ëã±Ùϯ¡§KdVÊýÄø¼°¡Ê¿ÀÊÝÆ»É×¡Ë 36¡Ý088
ë¸ý²íɧ¡¦¾¾ºê¹îɧ¡§ÁжÊŪ¿ÍÍÂΤȥ¯¥é¥¤¥ó·²¡¡¡¡¡¡¡Ê¾®ÅçÄêµÈ¡Ë 48¡Ý095
ëºê½ÓÇ·¡¦ËÙÅÄÎÉÇ·¡§²Ã·²¤ÈÂå¿ô·²¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊÃÝÆâ¡¡·é¡Ë 50¡Ý095
Åļ°ìϺ¡§¥È¥Ý¥í¥¸¡¼¡Ê¾¾Ëܹ¬Éס˷······ 26¡Ý279
Åļ°ìϺ¡§ÍÕÁØ¤Î¥È¥Ý¥í¥¸¡¼¡Êº£À¾±Ñ´ï¡Ë 29¡Ý190
ÅļÆóϺ¡§²òÀÏÈ¡¿ô¡Ê°ËÆ£À¶»°¡Ë·········· 15¡Ý250
Åļ¹§¹Ô¡§È¾·²ÏÀ¡Ê°æ´ØÀ¶»Ö¡Ë············· 26¡Ý186
Ã¸ÃæÃéϺ¡§°ÌÁê·²ÏÀ¡Ê¸åÆ£¼éË®¡Ë·········· 02¡Ý378
ðÌµÈ¡§Â¿ÍÍÂΤÎÈùʬ´ö²¿³Ø¡ÊÈ«»³ÍÎÆó¡Ë 30¡Ý167
ÅÔÃÞ½ÓϺ¡§Í¸Â·²¤È͸´ö²¿¡ÊÌÚ¼¡¡¹À¡Ë 36¡Ý179
»ûºå±Ñ¹§¡§¼Í±Æ´ö²¿³Ø¤Î´ðÁáÊ×½±Ê¾»µÈ¡Ë 01¡Ý350
ÅÚ°æ¸øÆó¡¦»°ÂðÉÒ¹±¡§¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊÝ·¿·Á¼°¤ÈÀ°¿ôÏÀ¡ÊÀõ°æÅ¯Ìé¡Ë 31¡Ý181
±ó»³¡¡·¼¡§Ìµ¸Â¤ÈϢ³¡ÊÌðÌî·òÂÀϺ¡Ë···· 05¡Ý056
±ó»³¡¡·¼¡§¹ÔÎóÏÀ¡Ê°ðÍձɼ¡¡Ë············· 06¡Ý054
¸ÍÀîÈ»¿Í¡§¶¦Ìò¸ûÇÛË¡¡ÊÆ£°æ¡¡¹¨¡Ë······· 30¡Ý170
¸ÍÅÄÀ¹Ï¡§ÈóÀþ·Á³Ê»ÒÎϳءʾåÌî´î»°Íº¡Ë 36¡Ý280
¸ÍÅÄÀ¹Ï¡§ÈóÀþ·ÁÇÈÆ°¤È¥½¥ê¥È¥ó
¡Ê¾åÌî´î»°Íº¡Ë 36¡Ý280
½½»þÅìÀ¸¡§¥¨¥ë¥´¡¼¥ÉÍýÏÀÆþÌç¡Ê¼ÅÄ¡¡Çî¡Ë 26¡Ý178
Ãæ°æ»°Î±¡§¥ê¡¼¥Þ¥óÌ̤ÎÍýÏÀ¡ÊÆï¡¡¹¬ÃË¡Ë 34¡Ý089
±ÊÈø¡¡ÈÆ¡§·²¤È¥Ç¥¶¥¤¥ó¡Ê´äºê»ËϺ¡Ë···· 28¡Ý287
±ÊÈø¡¡ÈÆ¡¦ÄÅÅç¹ÔÃË¡§¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡¡Í¸Â·²¤Îɽ¸½¡ÊÅÏÊÕ¥¢¥Ä¥ß¡Ë 40¡Ý279
Ãæ²¬¡¡Ì¡§Áжʴö²¿³ØÆþÌç¡ÊÀîùõŰϺ¡Ë· 48¡Ý078
ÃæÀîµ×ͺ¡§Âç°è¤ÎRiemann´ö²¿³Ø
¡Ê±öÉ;¡Çî¡Ë 33¡Ý088
±ÊÅÄ²íµ¹¡§²Ä´¹ÂÎÏÀ¡ÊÀ¾»°½Åͺ¡Ë·········· 21¡Ý070
±ÊÅÄ²íµ¹¡¦µÜÀ¾Àµµ¹¡¦´Ý»³Àµ¼ù¡§¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ãê¾ÝÂå¿ô´ö²¿³Ø¡Ê¾¾Â¼±ÑÇ·¡Ë 26¡Ý275
ÃæÀ¾¥·¥Å¡§ÀÑʬÏÀ¡Êµ×ÊÝÅÄÍۿ͡˷········· 27¡Ý383
ÃæÌîÌÐÃË¡§Â¿ÊÑ¿ôÈ¡¿ôÏÀ¡ÊÎëÌÚ¡¡Íý¡Ë···· 36¡Ý085
ÃæÌ¸ÞϺ¡§¥Ò¥ë¥Ù¥ë¥È¶õ´ÖÏÀ¡Ê»°Â¼À¬Íº¡Ë 01¡Ý047
ĹÌî¡¡Àµ¡§¶ÊÌ̤οô³Ø¡Ê¾®ÎÓ¾¼¼·¡Ë······· 21¡Ý232
Ãæ»³¡¡Àµ¡¦Åì²°¸ÞϺ¡§Âå¿ô³Ø¶¡ÊÃÓÅÄÀµ¸³¡Ë 06¡Ý248
Æî±ÀÆ»Éס§ÈùʬÊýÄø¼°µ¡Ê½ÂëÂÙδ¡Ë···· 08¡Ý250
ÆéëÀ¶¼£¡§¿ôÍýÅý·×³Ø¡Ê¹©Æ£¹°µÈ¡Ë······· 31¡Ý275
À®ÅÄÀµÍº¡§½éÅùÂå¿ô³Ø¡ÊÀõÌî·¼»°¡Ë······· 21¡Ý065
À®ÅÄÀµÍº¡§¥¤¥Ç¥¢¥ëÏÀÆþÌç¡ÊÃæ°æ´îÏ¡˷ 23¡Ý159
À®ÅÄÀµÍº¡§Âå¿ô³Ø¡ÊÀÐÀîÉð»Ö¡Ë············· 29¡Ý185
ÆñÇÈ´°¼¤¡§½¸¹çÏÀ¡Ê¹â¶¶¸µÃˡ˷············ 29¡Ý086
Æó³¬Æ²ÉûÊñ¡§·ÐºÑ¤Î¤¿¤á¤ÎÀþ·¿¿ô³Ø¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê¸Å²°¡¡ÌÐ¡Ë 15¡Ý180
Æó³¬Æ²ÉûÊñ¡§¸½Âå·ÐºÑ³Ø¤Î¿ô³ØÅªÊýË¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê¸Å²°¡¡ÌÐ¡Ë 15¡Ý180
À¾Èø¿¿´î»Ò¡§³ÎΨÏÀ¡Ê²ÏÅÄζÉס˷········· 32¡Ý278
ÆüËܲʳػ˳زñÊÔ¡§ÆüËܲʳص»½Ñ»ËÂç·Ï¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê°ì¾¾¡¡¿®¡Ë 23¡Ý079
ÌîÌÚãÉס¦ÌðÅç¿®ÃË¡§È¯Å¸ÊýÄø¼°¤Î¿ôÃͲòË¡¡¡¡¡¡¡¡¡¡¡¡Ê»³¸ý¾»ºÈ¡Ë 30¡Ý171
Ìî¸ý¡¡¹¡¦Ê¡ÅÄÂóÀ¸¡§½éÅù¥«¥¿¥¹¥È¥í¥Õ¥£¡¼¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê±§É߽Ź¡Ë 29¡Ý173
Ìîºê°Âͺ¡§¥Ý¥Æ¥ó¥·¥ã¥ëÏÀ¡ÊµµÃ«½Ó»Ê¡Ë· 02¡Ý272
ǽÂå¡¡À¶¡§¶áÂåÈ¡¿ôÏÀ¡ÊÂçÄŲ졡¿®¡Ë···· 08¡Ý126
Æü¹çʸͺ¡¦Ìø¸¦ÆóϺ¡§¥Ò¥ë¥Ù¥ë¥È¶õ´Ö¤ÈÀþ·¿ºîÍÑÁÇ¡¡¡¡¡¡¡Ê°ÂÆ£¡¡µ£¡Ë 50¡Ý328
Èõ¸ýÄ÷°ì¡¦µÈ±Ê±ÙÃË¡¦ÅÏÊÕ¸øÉס§
¿ÊÑ¿ôÊ£ÁDzòÀÏÆþÌç¡ÊËÎÉôÅì²ð¡Ë 35¡Ý276
°ì¾¾¡¡¿®¡§Â¿ÊÑ¿ôÈ¡¿ôÏÀ¡Ê´ä¶¶Î¼Êå¡Ë···· 09¡Ý197
°ì¾¾¡¡¿®¡§Â¿ÊÑ¿ô²òÀÏÈ¡¿ôÏÀ¡ÊÀõ¸«·òÉ×¡Ë 13¡Ý190
°ì¾¾¡¡¿®¡§²òÀϳؽøÀâ¡ÊÅļÆóϺ¡Ë······· 15¡Ý247
°ì¾¾¡¡¿®¡§¿ôÃÍ·×»»¡Ê¹âÅÄ¡¡¾¡¡Ë·········· 16¡Ý184
°ì¾¾¡¡¿®¡§¶á»÷¼°¡Ê½ÂëÀ¯¾¼¡Ë············· 17¡Ý062
°ì¾¾¿®´ÆÌõ¡§¿ôÏÀ¤Ë¤ª¤±¤ë̤²ò·èÌäÂ꽸¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊÆ£¸¶ÀµÉ§¡Ë 36¡Ý183
ÆüÌͺ¡§¥¹¥Ú¥¯¥È¥ë²òÀϡʰËÍýÀµÉס˷ 31¡Ý276
Ê¿»³¡¡Äü¡§Ï»»¤ÎÃÂÀ¸¡Ê¾åÌî·ò¼¤¡Ë ÄÌ1´¬2¹æ¡Ý062
²Ú¡¡Íå¡¡¹®¡§¿ôÏÀƳ°ú¡Ê¹¾ÅĵÁ·×¡Ë······· 16¡Ý177
Ê¡ÅçÀµ½Ó¡§¥Ç¥£¥ê¥¯¥ì·Á¼°¤È¥Þ¥ë¥³¥Õ²áÄø¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊÀ¾²¬¹ñͺ¡Ë 31¡Ý282
Ê¡¸¶Ëþ½§Íº¡§¾ïÈùʬÊýÄø¼°¡ÊÆî±ÀÆ»Éס˷ 06¡Ý184
Æ£°æ¸÷¾¼¡§»þ·ÏÎó²òÀÏ¡ÊÀÖÊ¿¾»Ê¸¡Ë······· 32¡Ý283
Æ£ÌîÀº°ìÊÔ¡§·×»»¿ô³Ø¥Ï¥ó¥É¥Ö¥Ã¥¯¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊÂç¼Ç¡¡ÌÔ¡Ë 32¡Ý280
Éú¸«¹¯¼£¡§Îϳءʻ³Æâ¶³É§¡Ë················ 07¡Ý182
ËÙÀî±ÏÆó¡§Ê£ÁÇÂå¿ô´ö²¿³ØÆþÌç¡Êº£Ìî°ì¹¨¡Ë 43¡Ý282
Á°ÅÄʸͧ¡§Ï¢Â³´ö²¿³Ø¡Ê´ä¼¡¡Îþ¡Ë······· 05¡Ý055
Á°¸¶¾¼Æó¡§¿ôÍýÏÀÍý³Ø½øÀâ¡Ê¾®Ì¼¡¡Ë· 19¡Ý055
Á°¸¶¾¼Æó¡§¿ôÍýÏÀÍý³Ø¡Ê²ÖÂôÀµ½ã¡Ë······· 29¡Ý376
Áý»³¸µ»°Ïº¡§¾¯¿ôÎã¤Î¤Þ¤È¤áÊý, 1, 2¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê½ÂëÀ¯¾¼¡Ë 17¡Ý062
¾¾ÅçÍ¿»°¡§¥ê¡¼´ÄÏÀ¡Ê¿ù±º¸÷Éס˷········· 11¡Ý250
¾¾ÅçÍ¿»°¡§Â¿ÍÍÂÎÆþÌç¡ÊÂ翹±Ñ¼ù¡Ë······· 17¡Ý250
¾¾ÅÄÆ»É§¡§³°Èùʬ·Á¼°¤ÎÍýÏÀ¡Ê³À¹¾Ë®É×¡Ë 29¡Ý175
¾¾Â¼±ÑÇ·¡§½¸¹çÏÀÆþÌç¡ÊÂç·§¡¡Àµ¡Ë······· 20¡Ý117
¿åËܵ×Éס§Â¿ÍÍÂξå¤Îº¹Ê¬Ë¡¡ÊÁḶ»Íϯ¡Ë 26¡Ý378
¹ÂȪ¡¡ÌС§ÊÐÈùʬÊýÄø¼°ÏÀ¡ÊÅÄÊÕ¹¾ë¡Ë· 18¡Ý253
¹ÂȪ¡¡ÌС§¥ë¤Ù¡¼¥°ÀÑʬ¡ÊÌðÌîÌмù¡Ë···· 20¡Ý058
»°Â¼À¬Íº¡§Hilbert¶õ´ÖÏÀ¡ÊµµÃ«½Ó»Ê¡Ë· 02¡Ý085
µÜÂô¸÷°ì¡§¶áÂå¿ôÍýÅý·×³ØÄÌÏÀ¡Ê¿¹¸ýÈ˰ì¡Ë 07¡Ý126
¼¿ùË®ÃË¡§·ë¤ÓÌÜÍýÏÀ¤È¤½¤Î±þÍÑ¡ÊËÜ´Öζͺ¡Ë 47¡Ý309
ïÜ¡¡»Ì¡¡Äá¡§¿ôÏÀŪÊýË¡¡Ê¹¾ÅĵÁ·×¡Ë···· 16¡Ý179
ÌÐÌÚ¡¡Í¦¡¦°ËÆ£¸÷¹°¡§Èùʬ´ö²¿³Ø¤È¥²¡¼¥¸ÍýÏÀ¡¡¡¡¡¡¡¡¡¡¡ÊÂ翹±Ñ¼ù¡Ë 39¡Ý374
¿¹ËÜÀ¶¸ã¡§¿ôÏÀ¡Ê¿¹¡¡ÈËͺ¡Ë················ 06¡Ý126
»³ÆâÆóϺ¡¦¿¹¸ýÈ˰졦°ì¾¾¡¡¿®ÊÔ¡§ÅŻҷ׻»µ¡¤Î¡¡¡¡¡¡¡¡¤¿¤á¤Î¿ôÃÍ·×»»Ë¡µ¡Ê±§ÌîÍøÍº¡Ë 17¡Ý185
»³ÆâÆóϺÊÔ¡§Åý·×¿ôÃÍɽ¡¤¿·Èǡʰ쾾¡¡¿®¡Ë 26¡Ý274
»³Æâ¶³É§¡§²öž·²µÚ¤Ó¤½¤Îɽ¸½ÏÀ¡Ê¾®Ã«ÀµÍº¡Ë 01¡Ý231
»³Æâ¶³É§¡§ÊªÍý¿ô³Ø¡ÊµÈÅĹ̺î¡Ë·········· 03¡Ý251
»³Æâ¶³É§¡§ÊªÍý¿ô³Ø¡ÊµÈÅĹ̺î¡Ë·········· 15¡Ý189
»³Æâ¶³É§¡¦¿ù±º¸÷Éס§Ï¢Â³·²ÏÀÆþÌç ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê°ì¾¾¡¡¿®¡Ë 12¡Ý251
»³¸ý¾»ºÈ¡§ÈóÀþ·¿¸½¾Ý¤Î¿ô³Ø¡ÊÁýÅĵ×Ìï¡Ë 26¡Ý287
»³¸ý¾»ºÈ¡¦ÌîÌÚãÉס§¥¹¥Æ¥Õ¥¡¥óÌäÂê¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê»Í¥Äë¾½Æó¡Ë 36¡Ý086
»³ºêÂÙϺ¡§Ìµ¸Â¼¡¸µ¶õ´Ö¤Î¬Å١ʾ崬¡Ë¡¡ ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê²¼Â¼¹¨¾´¡Ë 32¡Ý091
»³ºêÂÙϺ¡§Ìµ¸Â¼¡¸µ¶õ´Ö¤Î¬Å١ʲ¼´¬¡Ë¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê²¼Â¼¹¨¾´¡Ë 32¡Ý281
»³ËÜ¡¡Â󡧷кѤλþ·ÏÎóʬÀϡʲ¬ÉôÌ÷·û¡Ë 41¡Ý186
µÈ¹¾Âö»ù¡§½éÅùÂè°ì³¬ÊÐÈùʬÊýÄø¼°ÏÀ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊÃæÌ¸ÞϺ¡Ë 01¡Ý145
µÈÅĹ̺¥¨¥ë¥´¡¼¥É½ôÄêÍý¡Ê²ÏÅķɵÁ¡Ë 01¡Ý350
µÈÅĹ̺ʪÍý¿ô³Ø³µÏÀ¡Ê²ÃÆ£ÉÒÉס˷··· 03¡Ý062
µÈÅĹ̺ÀÑʬÊýÄø¼°ÏÀ¡Ê»³Æâ¶³É§¡Ë···· 03¡Ý250
µÈÅĹ̺°ÌÁê²òÀϵ¡Ê°ËÆ£¡¡À¶¡Ë······· 04¡Ý191
µÈÅĹ̺¥Ò¥ë¥Ù¥ë¥È¶õ´ÖÏÀ¡Ê»°Â¼À¬Íº¡Ë 06¡Ý055
µÈÅĹ̺ÈùʬÊýÄø¼°¤Î²òË¡¡ÊÆî±ÀÆ»É×¡Ë 06¡Ý125
µÈÅĹ̺Ķȡ¿ôÏÀ¡Ê°ì¾¾¡¡¿®¡Ë·········· 09¡Ý130
µÈÅÄÍΰ졧¥ë¥Ù¥°ÀÑʬÆþÌç¡ÊµµÃ«½Ó»Ê¡Ë· 18¡Ý184
µÈÅÄÍΰ졦ÀÖ¡¡ÀÝÌé¡§¿ô³Ø½øÀâ¡Ê´ä¼¡¡Îþ¡Ë 06¡Ý249
ÏÂÅĽß¢¡§¥Î¥ë¥à´Ä¡Ê²Ù¸«¼é½õ¡Ë·········· 22¡Ý316
ÏÂã»°¼ù¡§ÈóÀþ·ÁÇÈÆ°¡ÊÉðÉô¾°»Ö¡Ë······· 46¡Ý080
ÅÏÊÕ¿®»°¡§³ÎΨÈùʬÊýÄø¼°¡ÊÃæÈø¿µÂÀϺ¡Ë 29¡Ý182
¥¢¥¤¥¼¥ë¥Þ¥ó¡¦¥Ö¥é¥ô¥§¥ë¥Þ¥ó¡¦¥í¥¾¥Î¥¨¥ë¡§¡¡ ¡¡¡¡¡¡¥Ñ¥¿¡¼¥óǧ¼±¤È³Ø½¬À©¸æ¡ÊËÙÉô°Â°ì¡Ë 32¡Ý372
B. H. Arnold¡ÊÀÖ¡¡ÀÝÌéÌõ¡Ë¡§¥È¥Ý¥í¥¸¡¼ÆþÌç¡¡¡¡¡¡¡¡¡¡¡Ê¿åÌî¹îɧ¡Ë 17¡Ý058
¥¦¥¤¡¼¥¯¥¹¡Ê»°Â¼¡¡¸î¡¦Æþ¹¾À²±ÉÌõ¡Ë¡§¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡¡¶ÊÌ̤ȼ¡¸µÂ¿ÍÍÂΤò¸«¤ë-¶õ´Ö¤Î·Á-¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Êºî´Ö¡¡À¿¡Ë······································ ÄÌ2´¬2¹æ¡Ý087
¥¨¥Ó¥ó¥°¥Ï¥¦¥¹Â¾¡ÊÀ®ÌÚͦÉ×Ìõ¡Ë¡§¿ô¡Ê¾å¡¦²¼¡Ë (H. D. Ebbinghaus¡§Numbers) ¡ÊÃæÅç¾¢°ì¡Ë················································· 46¡Ý077
S. G. ¥®¥ó¥Ç¥£¥¥ó¡Ê»°±º¿É×Ìõ¡Ë¡§¥¬¥¦¥¹¤¬¡¡¡¡¡¡¡¡¡¡Àڤ곫¤¤¤¿Æ»¡ÊµÈÅÄÊþ¹¥¡Ë ÄÌ1´¬3¹æ¡Ý055
D. E. KnuthÃø, ÅçÆâ¹ä°ì´ÆÌõ¡§The Art of Computer
Programming Vol. 1, 2 ¡¡¡¡¡¡¡¡¡¡(ÌÚÅÄÍ´»Ê)················································· 44¡Ý282
D. B. ¥¶¥®¥ä¡¼¡ÊÊÒ»³¹§¼¡Ìõ¡Ë¡§¿ôÏÀÆþÌç¡¡¡¡¡¡¡¡¡¡¡¡¡Ê¹ÓÀî¹±ÃË¡Ë 46¡Ý083
L. Schwartz¡ÊµÈÅĹ̺î, ÅÏÊÕÆóϺÌõ¡Ë¡§¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊªÍý¿ô³Ø¤ÎÊýË¡¡ÊÆ£¸¶ÂçÊå¡Ë 20¡Ý187
I. M. ¥·¥ó¥¬¡¼¡¤J. A. ¥½¡¼¥×¡§¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¥È¥Ý¥í¥¸¡¼¤È´ö²¿³ØÆþÌç¡ÊÎëÌÚ¼£É×¡Ë 30¡Ý087
¥¹¥ß¥ë¥Î¥Õ¡§¹âÅù¿ô³Ø¶µÄø, 1¡Á12¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê°ì¾¾¡¡¿®¡Ë 17¡Ý188
¥Ë¥Ã¥«¡¼¥½¥ó¡¦¥¹¥Ú¥ó¥µ¡¼¡¦¥¹¥Æ¥£¡¼¥ó¥í¥Ã¥É¡¡¡¡¡¡¡¡¡¡¡¡¡Ê¸¶ÅĽŽա¦º´Æ£Àµ¼¡Ìõ¡Ë¡§
¸½Âå¥Ù¥¯¥È¥ë²òÀϡʿ¹¡¡¡¡µ£¡Ë················································· 17¡Ý183
E.
J. ¥Ï¥Ê¥ó¡§»þ·ÏÎó²òÀÏ¡ÊÆ£°æ¸÷¾¼¡Ë· 28¡Ý177
A¡¦¥Ï¥é¥Ê¥¤¡§ÈùʬÊýÄø¼°¡Ê²ÃÆ£½çÆó¡Ë·· 20¡Ý188
J. ¥Õ¥©¥ó¡¡¥Î¥¤¥Þ¥ó¡§¼«¸ÊÁý¿£¥ª¡¼¥È¥Þ¥È¥ó¤Î¡¡¡¡¡¡ÍýÏÀ¡Ê¾®ÎÓ¹§¼¡Ïº¡Ë 29¡Ý087
¥Ö¥ë¥Ð¥¡§¿ô³Ø»Ë¡Ê¶áÆ£´ðµÈ¡Ë············· 27¡Ý191
¥Ü¥´¥ê¥å¡¼¥Ü¥Õ¡¦¥ß¥È¥í¥Ý¥ê¥¹¥¡¼¡§ÈóÀþ·¿¿¶Æ°ÏÀ¡¡¡¡¡¡¡¡¡ÊÀêÉô¡¡¼Â¡Ë 16¡Ý123
¥Ü¥Û¥Ê¡¼¡§²Ê³Ø»Ë¤Ë¤ª¤±¤ë¿ô³Ø»Ë¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ÊÃæÂ¼¹¬»ÍϺ¡Ë 24¡Ý247
¥ß¥é¡¼¡§Lie·²¤ÈÆÃ¼ì´Ø¿ô¡ÊÀÄËÜÏÂɧ¡Ë· 28¡Ý380
O. A. ¥é¥¸¥¼¥ó¥¹¥«¥ä¡§¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Èó°µ½ÌÇ´Àή¤Î¿ô³ØÅªÍýÏÀ¡Êµ·²æÈþ°ì¡Ë 38¡Ý285
E. L. ¥ì¡¼¥Þ¥ó¡§¥Î¥ó¥Ñ¥é¥á¥È¥ê¥Ã¥¯¥¹¡¨½ç°Ì¤Ë¤â¤È¤Å¤¯Åý·×ŪÊýË¡¡ÊÇò´ú¿µ¸ã¡Ë 32¡Ý188
Robert D. M. Accola¡§Topics in the Theory of
Riemann Surfaces (ÌÚ¼½¨¹¬) 49¡Ý431
J. F. Adams¡§Lectures on Lie groups¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡(¹ÓÌÚ¾¹Ï¯) 23¡Ý071
Colin C. Adams¡§The Knot Book, ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡An Elementary Introduction
to the Mathematical Theory of Knots¡¡¡¡¡¡¡¡¡¡¡¡¡¡ (¶â¿®ÂÙ¤)··································· 49¡Ý326
L.
V. Ahlfors¡§Complex analysis (µµÃ«½Ó»Ê) 06¡Ý122
L.
V. Ahlfors¡§Complex analysis (µµÃ«½Ó»Ê) 21¡Ý231
Lars. Ahlfors¡§Lectures on quasiconformal
mappings (µÚÀî¹ÂÀϺ) 19¡Ý187
A. C. Aitken¡§The case against decimalisation (ÊÔ½¸Éô) 15¡Ý191
M. Akahira, K. Takeuchi¡§Asymptotic ¡¡¡¡¡¡efficiency of statistical
estimators. ¡¡Concepts and higher order asymptotic
efficiency (°ð³ÀÀëÀ¸)···················· 35¡Ý093
Masafumi Akahira¡§The Structure of ¡¡Asymptotic Deficiency of
Estimators¡¡¡¡¡¡¡¡ (¹¾¸ý¿¿Æ©)················································· 42¡Ý186
M. Akahira, K. Takeuchi¡§Non–Regular Statistical
Estimation (µ×ÊÝÌÚµ×¹§) 50¡Ý102
G. Alexits¡§Convergence problems of ¡¡orthogonal series (°ì¾¾¡¡¿®) 14¡Ý253
S. Amari¡§Differential–geometrical
methods in statistics (¹¾¸ý¿¿Æ©) 39¡Ý181
American Mathematical SocietyÊÔ¡§¡¡Experimental arithmetic high
computing ¡¡and mathematics (°ì¾¾¡¡¿®)················································· 20¡Ý062
F. W. Anderson¡¤K. R. Fuller¡§Rings and categories modules (À¯ÃÓ´²»°) 29¡Ý179
V. I. Arnold¡§Mathematical methods of ¡¡¡¡¡¡classical mechanics (ÀÄËÜÏÂɧ) 30¡Ý172
V. I. Arnold¡§Geometrical methods in the theory of
ordinary differential equations
(±§É߽Ź)················································· 37¡Ý287
V. I. Arnol'd¡§Ordinary Differential
Equations ¡¡¡¡(°ËÆ£½¨°ì) 46¡Ý082
E. Artin¡§Geometric algebra
¡¡¡¡(×½±Ê¾»µÈ¡¦¶Ì²Ï¹±É×) 11¡Ý124
M. Aschbacher¡§Finite group theory ¡¡¡¡(¸ÞÌ£·òºî) 40¡Ý273
K. B. Athreya & P. E. Ney¡§
Branching processes (ÅÄÃæ·ò°ì) 27¡Ý184
M. Atiyah¡§–Theory (µÈ¼Á±°ì)······· 21¡Ý306
L. Auslander¡§Differential geometry
¡¡¡¡(ÌÐÌÚ¡¡Í¦) 21¡Ý154
Y. Bar–Hillel (editor)¡§Mathematical logic and
foundations of set theory (Ê¡»³¡¡¹î) 24¡Ý250
W. Barth, C. Peters, A. Van de Ven¡§¡¡¡¡¡¡¡¡¡¡Complex analytic surfaces (µÜ²¬Íΰì) 37¡Ý285
T. Bartoszyński, H. Judah¡§Set Theory, ¡¡¡¡¡¡¡¡On The structure of the real
line ¡¡¡¡¡¡¡¡¡¡¡¡(²ÃÌÐÀÅÉ×)················································· 50¡Ý320
J. Barwise¡§Admissible sets and
structures ¡¡¡¡(¼ÄÅļ÷°ì) 31¡Ý183
J. Barwise, S. Feferman (Ed.)¡§Model–theoretic logics (ÄÚ°æÌÀ¿Í) 40¡Ý089
N. K. Bary¡§A treatise of trigonometric
series, 1, 2 (ÌðÌîÌмù) 18¡Ý186
H. Bass¡§Algebraic K–theory (ÂçÎÓÃéÉ×) 23¡Ý072
D. Bättig, H. Knörrer¡§Singularitäten ¡¡¡¡(ËÎÉôÅì²ð) 47¡Ý419
Alan F. Beardon¡§Iteration of Rational ¡¡Functions (±§É߽Ź) 45¡Ý283
E. F. BeckenbachÊÔ¡§Applied combinatorial
mathematics (°ì¾¾¡¡¿®) 17¡Ý252
E. F. Beckenbach-R. Bellman¡§¡¡¡¡¡¡¡¡¡¡¡¡¡¡Inequalities (°ì¾¾¡¡¿®) 14¡Ý251
J. L. Bell & A. B. Slomson¡§Models and ultraproducts:
An introduction (¾å¹¾½§Ãé¹°) 23¡Ý236
R. Bellman¡§Stability theory of
differential equations (Æî±ÀÆ»É×) 08¡Ý182
R. Bellman-K. L. Cooke¡§Differential–difference
equations (¿ù»³¾»Ê¿) 15¡Ý241
R. Benedetti & J. J. Risler¡§Real algebraic and semi–algebraic
sets (±öÅľ»¹°) 43¡Ý281
A. Bensoussan, J. L. Lions and
G.Papanicolaou¡§Asymptotic analysis for periodic structures ¡¡¡¡(ÅÏÊÕÆóϺ)················································· 33¡Ý093
C. Berge¡§Topological spaces (½§Ç·Æâ¼£ÃË) 17¡Ý056
J. O. Berger¡§Statistical decision
theory ¡¡¡¡(¼Äºê¿®Íº) 34¡Ý185
S. Bergman¡§The kernel function and ¡¡conformal mapping (°ì¾¾¡¡¿®) 04¡Ý107
P. Bernays-A. A. Fraenkel¡§
Axiomatic set theory (¶áÆ£´ðµÈ) 12¡Ý128
A. L. Besse¡§Manifolds all of whose
geodesics ¡¡are closed (ÃæÀîµ×ͺ) 01¡Ý378
L. Besse¡§Einstein manifolds (ÆóÌÚ¾¼¿Í) 40¡Ý187
P. Billingsley¡§Ergodic theory and
information ¡¡¡¡(µ×ÊÝ¡¡Àô) 24¡Ý249
G. Birkhoff¡§Lattice theory¡¤revised edition ¡¡¡¡(´ä¼¡¡Îþ) 02¡Ý373
G. Birkhoff-S. MacLane¡§A survey of modern algebra (°ðÍձɼ¡) 06¡Ý181
B. L. Bishop-R. J. Crittenden¡§Geometry of manifolds (ÄÍËÜÍÛÂÀϺ) 18¡Ý058
E. Bishop¡§Foundations of constructive ¡¡analysis (¶áÆ£´ðµÈ) 28¡Ý275
B. Blackadar¡§–Theory for Operator Algebras ¡¡¡¡(Ãæ¿À¾Í¿Ã) 41¡Ý279
R. M. Blumenthal-R. K. Getoor¡§Markov processes and
potential theory¡¡¡¡¡¡¡¡¡¡¡¡¡¡ (¿ÀÅÄ¡¡¸î)················································· 22¡Ý236
R. P. Boas, Jr.¡§Entire functions (ÀÐÀî¡¡½¤) 11¡Ý119
R. P. Boas and R. C. Buck¡§Polynomial expansions of
analytic functions¡¡¡¡¡¡¡¡¡¡¡¡ (îËܹÀ°ì)················································· 17¡Ý058
Salomon Bochner¡§The role of mathematics in the rise of science
(ÃÝÆâ¡¡·¼) 20¡Ý248
S. Bochner-K. Chandrasckharan¡§Fourier transforms (²ÏÅÄεÉ×) 08¡Ý246
S. Bochner-W. T. Martin¡§Several complex variables (°ì¾¾¡¡¿®) 02¡Ý269
F. F. Bonsall¡¤J. Duncan¡§Complete normed algebras (ÏÂÅĽß¢) 28¡Ý277
A. Borel¡§Introduction aux groupes arithmetiques (Åĺäδ»Î) 23¡Ý314
A. Borel¡§Linear algebraic groups
(°¤Éô±Ñ°ì) 24¡Ý348
A. Borel et al.¡§Seminar on algebraic groups and related finite groups (´äËÙĹ·Ä) 24¡Ý338
A. Borovik, A. Nesin¡§Groups of Finite Morley Rank
(ÅÄÃæ¹î¸Ê) 48¡Ý097
S. Bosch, W. Lütkebohmert, M. Raynaud¡§¡¡Néron Models (ºØÆ£À¯É§) 48¡Ý071
N. Bourbaki¡§Théorie des ensembles, ¡¡¡¡¡¡¡¡Chap. µ, ¶ (ÀÖ¡¡ÀÝÌé) 07¡Ý050
N. Bourbaki¡§Algèbre. Chap. º¡¤» ¡¡ (´äËÙĹ·Ä) 07¡Ý178
N. Bourbaki¡§Topologie générale (¿¹¡¡µ£) 13¡Ý176
N. Bourbaki¡§Groupes et algèbres de Lie, ¡¡Chapitre Algèbre de Lie (´äËÙĹ·Ä) 13¡Ý180
N. Bourbaki¡§Variétés différentielles et
analytiques, µ (°ì¾¾¡¡¿®) 21¡Ý316
N. Bourbaki¡§Variétés différentielles et
analytiques¡¤¶ (°ì¾¾¡¡¿®) 26¡Ý086
O. Bratteli, D. W. Robinson¡§Operator algebras and quantum
statistical mechanics µ (´ßËܾ½¹§)················································· 33¡Ý285
David M. Bressoud¡§Factrization and Primality Testing (ÏÂÅĽ¨ÃË) 45¡Ý181
H. Breuer¡§Dictionary for computer
languages ¡¡
(°ì¾¾¡¡¿®) 20¡Ý115
H. Brézis¡§Opérateurs maximaux
monotones et semigroupes de
contractions dans les espaces de Hilbert (¾®À¾Ë§Íº)················································· 26¡Ý278
D. S. Bridges¡§Constructive functional
analysis ¡¡¡¡(¶áÆ£´ð¸ã) 32¡Ý374
F. E. BrowderÊÔ¡§Mathematical developments
arising from Hilbert problems
(°ì¾¾¡¡¿®)················································· 32¡Ý373
I. Bucur and A. Deleanu¡§Introduction to the theory of
categories and functors (ÉþÉô¡¡¾¼)················································· 22¡Ý231
A. Buium¡§Differential Algebraic Groups
of Finite Dimension (Çß¼¡¡¹À) 46¡Ý085
R. B. Burckel¡§Characterizations of among its subalgebras (²Ù¸«¼é½õ) 26¡Ý285
G. Burde, H. Zieschang¡§Knots (¼¾å¡¡ÀÆ) 39¡Ý378
M. Burrow¡§Representation theory of
finite groups (ÂçÅç¡¡¾¡) 19¡Ý056
H. BusemannÊÔ¡§Advances in mathematics¡¤1 ¡¡¡¡(°ì¾¾¡¡¿®) 18¡Ý127
P. Buser¡§Geometry and Specrta of
Compact Riemann Surfaces (ÃæÀ¾ÉÒ¹À) 50¡Ý317
P. Caraman¡§Homeomorfism cvasiconfome –dimensionale (°ì¾¾¡¡¿®) 23¡Ý065
C. Carathéodory¡§Funktionentheorie
¡¡¡¡(µµÃ«½Ó»Ê) 03¡Ý244
C. Carathéodory¡§Calculus of variations and
partial differential equations of the first order (¾®¾¾Í¦ºî)················································· 21¡Ý153
L. Carleson, T. W. Gamelin¡§COMPLEX DYNAMICS¡¡¡¡(ÌÚºäÀµ»Ë) 50¡Ý432
R. W. Carroll¡§Abstract methods in partial
differential equations (ÅÄÊÕ¹¾ë) 25¡Ý189
H. Cartan¡§Théorie élémentaire des
fonctions analytiques d'une ou plusieurs variables complexes (°ì¾¾¡¡¿®)················································· 14¡Ý063
Séminaire H. Cartan 1960/61¡§Familles d'espaces complexes
et fondements de la géométrie analytique (´ä¶¶Î¼Êå)················································· 16¡Ý251
H. Cartan-S. Eilenberg¡§Homological algebra ¡¡ ¡¡(D. Zelinsky) 08¡Ý185
M. L. Cartwright¡§Integral functions
(ÀÐÀî¡¡½¤) 11¡Ý119
T. E. Cecil¡§Lie Sphere Geometry (µÜ²¬Îé»Ò) 46¡Ý087
N. N. Čencov¡§Statistical decision rules
and optimal inference (´ÅÍø½Ó°ì) 36¡Ý187
K. Chandrasekharan¡§Introduction to analytic
number theory (εÂô¼þͺ) 22¡Ý233
F. Chatelin¡§Spectral approximation of
linear operators (Àи¶ÏÂÉ×) 38¡Ý085
A. W. Chatters & C. R. Hajarnavis¡§ Rings
with chain conditions (´ä±Ê¶³Íº) 34¡Ý283
Isaac Chavel¡§Riemannian Geometry: A
Modern Introduction (ÉðÆ£½¨É×) 49¡Ý437
G. Chavent, J. Jaffre¡§Mathematical models and finite elements for reservoir simulation (ͧ»Þ¸¬Æó)················································· 40¡Ý282
J. Cheeger¡¤D. G. Ebin¡§Comparison theorems ¡¡in Riemannian geometry (ÃæÀîµ×ͺ) 29¡Ý180
B.–Y. Chen¡§Geometry of
submanifolds ¡¡ ¡¡(Ñù»ý¾¡±Ò) 28¡Ý283
S. S. Chern¡§Complex manifolds without ¡¡potential theory (°ì¾¾¡¡¿®) 21¡Ý300
C. Chevalley¡§Theory of Lie groups I ¡¡¡¡(¸åÆ£¼éË®) 02¡Ý079
C. Chevalley¡§Théorie des groupe de Lie
II ¡¡¡¡(´äËÙĹ·Ä) 05¡Ý115
C. Chevalley¡§Algebraic theory of
spinors
¡¡¡¡(¶Ì²Ï¹±É×) 06¡Ý048
C. Chevalley¡§Introduction to the theory
of algebraic functions of one variable (Ãæ»³¡¡Àµ)················································· 06¡Ý050
C. Chevalley¡§The construction and study
of certain important algebras (´äËÙĹ·Ä) 09¡Ý255
Séminair Chevalley¡§Classification des groupes
de Lie algébriques (°¤Éô±Ñ°ì) 15¡Ý238
W. G. Chinn and N. E. Steenrod¡§First concepts of topology (°ì¾¾¡¡¿®) 20¡Ý062
G. Choquet¡§Topology (ÃÝÇ·Æâ¡¡æû)···· 21¡Ý305
K. L. Chung¡§Markov chains with
stationary transition probabilities (ÅÏÊÕ¼÷É×) 14¡Ý052
R. F. Churchhouse-J. C. HerzÊÔ¡§Computers in mathematical
research (°ì¾¾¡¡¿®) 21¡Ý301
P. G. Ciarlet¡§The finite element method
for elliptic problems (µÆÃÏʸͺ) 35¡Ý186
P. G. Ciarlet and J. L. Lions¡§editors¡§ Handbook of Numerical Analysis, Vol. ¶ Finite Element Methods
(Part 1) (ÅÚ²°ÂîÌé)··································· 46¡Ý073
P. G. Ciarlet¡§Introduction to Numerical
Linear Algebra and Optimisation (»°°æÉÌͧ) 48¡Ý076
A. H. Clifford-G. B. Preston¡§The algebraic ¡¡theory of semigroups (Åļ¹§¹Ô) 15¡Ý181
A. H. Clifford¡¤G. B. Preston¡§The algebraic ¡¡theory of semigroups (Åļ¹§¹Ô) 21¡Ý314
P. J. Cohen¡§Sets theory and the
continuum hypeothesis (ÆñÇÈ´°¼¤) 21¡Ý150
L. Collatz¡§Differentialgleichungen für ¡¡¡¡Ingenieure (¸Å²°¡¡ÌÐ) 14¡Ý125
L. Collatz¡§Funktionalanalysis und
numerische Mathematik (Æ£ÅÄ¡¡¹¨) 17¡Ý117
L. Collatz & W. Wetterling¡§Optimierungsaufgaben (¿ù»³¾»Ê¿) 21¡Ý235
P. Conner and E. Floyd¡§Differentiable periodic maps (ÆâÅÄÉú°ì) 24¡Ý339
A. Connes¡§Noncommutative Geometry ¡¡¡¡(²ÏÅìÂÙÇ·) 49¡Ý217
C. Constantinescu-A. Cornea¡§Ideale Ränder Riemannscher
Flächen (Ãæ°æ»°Î±) 16¡Ý245
Constantinescu-Cornea¡§Potential theory of harmonic
spaces (ÃӾ嵱ÃË) 29¡Ý084
J. H. Conway¡§On numbers and games ¡¡¡¡(»³ºêÍÎÊ¿) 31¡Ý377
J. H. Conway, R. T. Curtis, S. T. Norton,
R. A. Parker, R. A. Wilson¡§Atlas of finite groups ¡¡¡¡(µÈÅÄÃιÔ)················································· 39¡Ý185
L. Corwin, F. P. Greenleaf¡§Representations of nilpotent
Lie groups and their applications, Part µ (°æ¾å½ç»Ò)················································· 49¡Ý107
R. Courant¡§Dirichlet's principle,
conformal mapping, and minimal surfaces
(¾®¾¾Í¦ºî)················································· 04¡Ý109
H. Cramér¡§Mathematical methods of
statistics ¡¡¡¡(²ÏÅķɵÁ) 03¡Ý060
H. Cramér-M. R. Leadbetter¡§Stationary and related
stochastic processes (ÈôÅÄÉð¹¬) 20¡Ý250
Richard H. Crowell-Ralph H. Fox¡§ Introduction to knot theory (Ìî¸ý¡¡¹) 17¡Ý053
C. W. Curtis-I. Reiner¡§Representation theory of
finite groups and associative algebras ¡¡¡¡(ÂçÅç¡¡¾¡) ················································· 16¡Ý172
H. L. Cycon, R. G. Froese, W. Kirsch,
B. Simon¡§Schrödinger operators¡½With Applications to Quantum
Mechanics and Global Geometry (ÃæÂ¼¡¡¼þ)······· 43¡Ý375
I. Daubechies¡§Ten Lectures on
Wavelets ¡¡¡¡(¼éËÜ¡¡¹¸) 47¡Ý085
M. Davis¡§Computability and
unsolvability ¡¡¡¡(ÅÄÃæ¾°É×) 20¡Ý253
M. de Guzmán¡§Real variable methods and
Fourier analysis (ÌðÌîÌмù) 36¡Ý186
G. de Rham¡§Variétés différentiables ¡¡¡¡(°ì¾¾¡¡¿®) 07¡Ý171
C. Dellacherie et P. A. Meyer¡§Probabilités et potentiel,
théorie des martingales
(É÷´¬µªÉ§)················································· 33¡Ý378
P. Dembowski¡§Finite geometries
(°ì¾¾¡¡¿®) 21¡Ý303
J. Dénes and A. D. Keedwell¡§Latin squares ¡¡and their applications (»³Ëܹ¬°ì) 28¡Ý380
U. Dierkes, S. Hildebrandt, A. Küster
and O. Wohlrab¡§Minimal Surfaces ¶, Boundary Regularity (ÀмľǷ)················································· 47¡Ý087
J. Dieudonné¡§Sur les groupes
classiques ¡¡¡¡(ÉþÉô¡¡¾¼) 04¡Ý112
J. Dieudonné¡§La géométrie des groupes
classiques (¾®Ìî¡¡¹§) 09¡Ý128
J. Dieudonné¡§Foundation of modern analysis (ÌðÌîÌмù) 17¡Ý122
V. A. Ditkin-A. P. Prudnikov¡§Operational calculus in two
variables and its applications (°ì¾¾¡¡¿®)················································· 14¡Ý254
J. Dixmier¡§Les algèbres d'opérateurs
dans l'espace Hilbertien (ÃÝÇ·Æâ¡¡æû) 26¡Ý372
J. Dixmier¡§Les –algèbres et leurs représentations (ÃÝÇ·Æâ¡¡æû) 26¡Ý374
V. Dlab and P. Gabriel¡§¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Representation theory (ÂÀÅáÀî¹°¹¬Â¾) 34¡Ý375
L. Dornhoff¡§Group representation
theory ¡¡ ¡¡(¸÷¡¡Æ»Î´) 27¡Ý278
F. R. Drake¡§Set theory (¹â¶¶¸µÃË)···· 29¡Ý378
B. A. Dubrovin, A. T. Fomenko, S. P.
Novikov¡§Modern geometry µ, ¶ (¿¹ËÜÌÀɧ) 40¡Ý366
N. Dunford-J. T. Schwartz (with the assistance of W. Bade-R. G.
Bartle)¡§ Linear operators, Partµ (µÈÅĹ̺î)················································· 12¡Ý065
N. Dunford-J. T. Schwartz¡§
Linear operators, Part¶ (SIRS) 18¡Ý123
P. L. Duren¡§Theory of –spaces ¡¡¡¡(ÃæÂ¼µÈ͸¡¦Ìø¸¶ÆóϺ) 28¡Ý184
G. Duvaut, J. L. Lions¡§Inequalities in mechanics and physics (¾®À¾Ë§Íº) 38¡Ý378
R. E. Edwards & G. I. Gaudry¡§Littlewood-Paley and
multiplier theory (µÜÃϾ½É§) 31¡Ý280
B. Efron¡§The Jackknife, the Bootstrap
and Other Resampling Plans (ÅÄ·ªÀµ¾Ï¡¦Ýê¶â˧)················································· 45¡Ý090
L. Ehrenpreis¡§Fourier analysis in several
complex variables (²Ï¹çδ͵) 24¡Ý152
M. Eichler¡§Quadratische Formen und
orthogonale Gruppen (¾®Ìî¡¡¹§) 09¡Ý249
S. Eilenberg-N. Steenrod¡§Foundations of algebraic
topology (Ãæ²¬¡¡Ì) 05¡Ý250
F. El Zein¡§Introduction à la théorie de
Hodge mixte (±±°æ»°Ê¿) 48¡Ý202
C. J. Elieser¡§¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ ¡¡¡¡ Concise vector
analysis (ÊÔ½¸Éô) 15¡Ý191
R. Engelking¡§General Topology (Revised
and completed edition) (ÂçÅĽճ°) 46¡Ý369
G. Faltings¡§Lectures on the Arithmetic
Riemann-Roch Theorem (¾®ÎÓμ°ì) 47¡Ý088
V. V. Fedorchuk, A. Ch. Chigogidze¡§Absolute Retracts and
infinite dimensional manifolds ¡¡¡¡(»ûÅÄÉһʡ¦ÄÅÅĸ÷°ì)················································· 48¡Ý432
R. P. Feinerman and D. J. Newman¡§ Polynomial approximation (ÎëÌÚµÁÌé) 30¡Ý084
W. Feit¡§¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Character of finite groups (±ÊÈø¡¡ÈÆ) 21¡Ý156
A. A. Fel'dbaum¡§Optimum control systems ¡¡¡¡(¿ù»³¾»Ê¿) 19¡Ý121
J. M. G. Fell-R. S. Doran¡§Representations of –Algebras, Locally Compact Groups and Banach
–Algebraic Bundles, µ,¶ ¡¡¡¡
(»³¾å¡¡¼¢)··································· 41¡Ý274
W. Feller¡§An introduction to
probability theory and its applications (´Ý»³µ·»ÍϺ) 05¡Ý053
W. Feller¡§An introduction to
probability theory and its applications, µ,¶ (´Ý»³µ·»ÍϺ) 19¡Ý062
J. F. Fenstad¡¤P. G. HinmanÊÔ¡§Generalized recursion theory
(ÅÄÃæ¾°É×) 28¡Ý273
T. S. Ferguson¡§Mathematical statistics¡§ A decision theoretic
approach (¹©Æ£¹°µÈ)················································· 27¡Ý285
S. E. Fienberg and D. V. HinkleyÊÔ¡§R. A. Fisher: An
appreciation (ÃÝÆâ¡¡·¼) 33¡Ý373
Herbert Fleischer¡§Eulerian Graphs and Related Topics, Part µ, Vol. 1 & 2 (ÅÚ²°¼éÀµ)················································· 44¡Ý365
K. W. FolleyÊÔ¡§Semigroups (Åļ¹§¹Ô) 23¡Ý311
A. P. Fordy, J. C. Wood (Eds)¡§Harmonic Maps and Integral
Systems (±ºÀî¡¡È¥) 48¡Ý204
O. Forster¡§Lecture on Riemann
surfaces ¡¡¡¡¡¡(·ªÎÓúÂÏÂ) 38¡Ý091
Forsythe, G. E. -W. R. Wasow¡§Finite–difference methods
for partial differential equations
¡¡¡¡(»³¸ý¾»ºÈ)················································· 20¡Ý241
D. S. Freed & K. K. Uhlenbeck¡§Instantons and four–manifolds (°ËÆ£¸÷¹°) 39¡Ý370
M. Freidlin¡§Functional integration and partial differential
equations (À®ÅÄÀ¶Àµ) 40¡Ý365
Frekel-Lepowski-Mourman¡§Vertex operator algebras and
the Monster (¸¶ÅĹ̰ìϺ) 43¡Ý177
Peter Freyd¡§Abelian catagories (ÉþÉô¡¡¾¼) 17¡Ý174
L. Fuchs¡§Abelian groups (ËÜÅĶպÈ)·· 12¡Ý245
L. Fuchs¾ÊÔ¡§Proceedings of the
colloquium on Abelian groups (ËÜÅĶպÈ) 18¡Ý053
H. Fujimoto¡§Value Distribution Theory of
the Gauss Map of Minimal Surfaces in ¡¡ ¡¡(Ìî¸ý½á¼¡Ïº)················································· 48¡Ý215
T. Fujita¡§Classification Theories of
Polarized Varieties (¿ù¹¾¡¡Å°) 44¡Ý088
M. Fukushima¡§Dirichlet forms and Markov
processes (Űæ±ÑÀ¸) 36¡Ý082
W. Fulton¡§Intersection theory (µÜÀ¾Àµµ¹) 39¡Ý186
W. Fulton¡§Introduction to Toric
Varieties ¡¡¡¡ (ÀÐÅÄÀµÅµ) 48¡Ý091
A. Futaki¡§Kaehler-Einstein Metrics and
Integral Invariants (¾®°ë·û»Ë) 41¡Ý283
S. A. Gaal¡§Linear analysis and
representation theory (ÏÂÅĽß¢) 27¡Ý283
F. D. Gakhov (I. N. Sneddon±ÑÌõ)¡§ Boundary value problems (·§¥Î¶¿¡¡½à) 19¡Ý188
T. W. Gamelin¡§ Uniform
algebras (ÏÂÅĽß¢) 26¡Ý189
H. h. GarabedianÊÔ¡§
Approximation of functions (°ì¾¾¡¡¿®) 18¡Ý060
L. Garding¡§Encounter with
mathematics ¡¡¡¡(µÈÀî¡¡ÆØ) 31¡Ý178
S. B. Garnett¡§Bounded analytic
functions ¡¡¡¡(ÎÓ¡¡¼Â¼ù¹) 35¡Ý089
A. GelbartÊÔ¡§Some recent advances in the basic sciences (°ì¾¾¡¡¿®) 21¡Ý301
B. R. Gelbaum-J. M. H. Olmstead¡§Counterexamples in analysis
(°ì¾¾¡¡¿®) 17¡Ý061
I. M. Gel'fand-M. I. Graev-N. Ya.
Vilenkin¡§Generalized functions (ÊÔ½¸Éô) 19¡Ý128
I. M. Gel'fand, M. I. Graev, I. I.
Pyatetskii-Shapiro¡§É½¸½ÏÀ¤ÈÊÝ·¿È¡¿ô (ÀÞ¸¶ÌÀÉ×) 23¡Ý065
Ya. L. Geronimus¡§Polynomials orthogonal on a
circle and interval (°ì¾¾¡¡¿®) 14¡Ý253
J. K. Ghosh(ed.)¡§Statistical Information and
Likelihood : A Collection of Critical Essays ¡¡by Dr. D. Basu (Áð´Ö»þÉð)················································· 42¡Ý184
V. Gillemin and S. Sternberg¡§ Deformation theory of pseudogroup
structures (¾¾ÅÄÆ»É§)················································· 23¡Ý235
A. Ginzburg¡§Algebraic theory of automata ¡¡¡¡(»ûÅÄʸ¹Ô) 23¡Ý077
Jean-Yves Girard¡§Proofs and Types ¡¡ ¡¡(Ȭ¿ùËþÍø»Ò) 43¡Ý181
J. Glimm and A. Jaffe¡§Quantum physics ¡¡ ¡¡—–A functional integral
point of view—– ¡¡ ¡¡(¹ÓÌÚÉÔÆóÍÎ)················································· 35¡Ý091
R. Glowinski, J. L. Lions, R. Trémolères¡§ Analyse numérique des inéquations variationelles, Tome 1,
Tome 2 (µíÅç¾ÈÉ×)··································· 32¡Ý088
B. V. Gnedenko-A. N. Kolmogorov¡§Limit distributions for sums
of independent random variables (¹ñÂôÀ¶Åµ)················································· 08¡Ý187
C. Godbillon¡§Feuilletages, Études géométriques (À¾¿¹ÉÒÇ·) 46¡Ý071
R. Godement¡§Topologie algébrique et théorie des
faisceaux (ÉþÉô¾½É×) 12¡Ý253
I. C. Gohberg and M. G. Krein¡§Theory and applications of
Volterra operators in Hilbert
space (¾®Ã«âðì)················································· 30¡Ý164
S. I. Goldberg¡§Curvature and homology ¡¡¡¡(¾®È«¼éÀ¸) 16¡Ý170
S. W. Golomb¡§Polyo!minoes (°ì¾¾¡¡¿®) 20¡Ý245
Golubisky-Gullemin¡§Stable mappings and their
singularities (Ê¡ÅÄÂóÀ¸) 30¡Ý089
R. L. Goodstein¡§Fundamental concepts of
mathematics (ÀÖ¡¡ÀÝÌé) 15¡Ý128
D. Gorenstien¡§Finite groups (ÅÔÃÞ½ÓϺ) 22¡Ý317
M. Goresky, R. Macpherson¡§ Stratified
Morse Theory (Æ£ÌÚ¡¡ÌÀ) 48¡Ý073
M. Goto & F. D. Grosshans¡§Semisimple Lie algebra (¹¾¸ýÀµ¹¸) 37¡Ý183
W. H. Gottschalk-G. A. Hedlund¡§Topological dynamics (º´ÇìÂîÌé) 10¡Ý054
S. H. Gould¡§A manual for translators of
mathematical russian (°ì¾¾¡¡¿®) 19¡Ý191
S. H. Gould-P. E. Obreanu¡§Romanian– English dictionary and
grammar for the mathematical sciences (°ì¾¾¡¡¿®)················································· 20¡Ý124
I. S. Gradshteyn-I. M. Ryzhik¡§
Table of Integrals, Series and Products (°ì¾¾¡¡¿®)················································· 18¡Ý255
H. Grauert¡¦R. Remmert¡§Analytishe Stellenalgebren
(ÌÚ¼°êͺ)
28¡Ý284
P. Griffiths & J. Morgan¡§Rational homotopy theory and
differential forms (¿¹ÅÄÌÐÇ·) 35¡Ý091
G. W. Grimmett¡§Percolation (Èõ¸ýÊÝÀ®) 46¡Ý079
M. Gromov¡§Structures métriques pour
les variétés riemanniennes (¼ò°æ¡¡Î´) 37¡Ý088
V. Guillemin, S. Sternberg¡§Symplectic techniques in
physics (»°¾å·òÂÀϺ) 37¡Ý284
P. C. Gunning¡§Lectures on Riemann surfaces
(°ì¾¾¡¡¿®) 19¡Ý118
R. C. Gunning-H. Rossi¡§Analytic functions of
several complex variables (°ì¾¾¡¡¿®) 17¡Ý120
R. K. Guy¡§Unsolved problems in number theory (Æ£¸¶ÀµÉ§) 36¡Ý183
Rudolf Haag¡§Local Quantum Physics (Fields,
Particles, Algebras) (¹ÓÌÚÉÔÆóÍÎ) 45¡Ý285
S. J. Haberman¡§The analysis of frequency data (°ËÆ£¹§°ì) 29¡Ý189
H. Halberstam and H. E. Richert¡§ Sieve
methods (Ëܶ¶Íΰì) 31¡Ý179
M. Hall, Jr.¡§ ¡¡
¡¡The theory of groups (±ÊÈø¡¡ÈÆ) 14¡Ý185
P. Hall-C. C. Heyde¡§Martingale limit theory and
its applications (µÈ¸¶·ò°ì) 34¡Ý379
Peter Hall¡§The Bootstrap and Edgeworth
Expansion (Ýê¶â˧¡¦ÅÄ·ªÀµ¾Ï) 44¡Ý371
P. R. Halmos¡§Measure theory (µµÃ«½Ó»Ê) 03¡Ý245
P. R. Halmos¡§Introduction to Hilbert
space and the theory of
spectral multiplicity
(°Ëƣδ»Ê)················································· 07¡Ý050
P. R. Halmos¡§Lectures on ergodic
theory ¡¡¡¡(°ËÆ£À¶»°) 12¡Ý254
F. Harary¡§Graph theory (°ì¾¾¡¡¿®)··· 23¡Ý069
G. H. Hardy¡§Divergent series (¾¾»³¡¡¾º) 09¡Ý056
T. E. Harris¡§Theory of branching
processes ¡¡¡¡(ËÜÈø¡¡¼Â) 17¡Ý053
W. A. Harris¡¤Jr. and Y. SibuyaÊÔ¡§ Proceedings United States-Japan seminar on differential and
functional equations (°ì¾¾¡¡¿®)··································· 21¡Ý317
Z. Harris¡§Mathematical structures on
language ¡¡¡¡(Ìîºê¾¼¹°) 24¡Ý080
R. Hartshorne¡§Algebraic geometry
¡¡
¡¡(´Ý»³Àµ¼ù) 31¡Ý184
H. Hasse¡§Vorlesungen über
Zahlentheorie ¡¡ ¡¡(Ëö¹Ë½ú°ì) 03¡Ý056
H. Hasse¡§Über die Klassenzahl
abelscher Zahlkörper (¹õÅÄÀ®¾¡) 04¡Ý250
H. Hasse¡§Mathematik als Wissenschaft
Kunst und Macht (Ëö¹Ë½ú°ì) 05¡Ý185
M. Hasumi¡§Hardy classes on infinitely
connected Riemann surfaces (ÎÓ¡¡¼Â¼ù¹) 37¡Ý187
T. Hawkins¡§Lebesgue's theory of
integration ¡¡¡¡(¼ÅÄ¡¡Á´) 26¡Ý085
W. K. Hayman¡§Subharmonic Functions, Vol. 2 (ÁêÀî¹°ÌÀ) 43¡Ý283
G. Heckman, H. Schlichtkrull¡§Harmonic Analysis and
Special Functions on Symmetric Spaces (¼¨Ìî¿®°ì)················································· 49¡Ý332
G. Hecor, U. Hirsch¡§Introduction to the geometry of foliations (°ðÍÕ¾°»Ö) 39¡Ý376
M. Heins¡§Selected topics in the
classical theory of functions of a complex variable
(°ì¾¾¡¡¿®)················································· 14¡Ý121
M. Heins¡§Complex function theory ¡¡ ¡¡(µµÃ«½Ó»Ê) 24¡Ý342
S. Helgason¡§Differential geometry and
symmetric spaces (¿ù±º¸÷É×) 15¡Ý252
S. Helgason¡§Groups and geometric
analysis, integral geometry, invariant differential operators, and spherical
functions (²Ïź¡¡·ò)··································· 39¡Ý375
L. L. Helms¡§Introductions to potential
theory ¡¡¡¡(ÆóµÜ¿®¹¬) 26¡Ý184
D. R. HenneyÊÔ¡§Open questions in mathematics (°ì¾¾¡¡¿®) 33¡Ý090
Peter Henrici¡§Discrete variable methods in
ordinary differential equations¡¡¡¡¡¡¡¡¡¡¡¡¡¡(°ì¾¾¡¡¿®)················································· 17¡Ý114
Peter Henrici¡§Error propagation for difference methods (°ì¾¾¡¡¿®) 17¡Ý114
Peter Henrici¡§Elements of numerical
analysis¡¡¡¡(°ì¾¾¡¡¿®) 17¡Ý114
P. Henrici¡§Applied and computational complex analysis (°ì¾¾¡¡¿®) 30¡Ý168
H. Hermes¡§Einführung in die mathematische Logik (Á°¸¶¾¼Æó) 17¡Ý249
M. Hervé¡§Several complex variables, local theory (°ì¾¾¡¡¿®) 16¡Ý186
E. Hewitt-K. Stromberg¡§Real and abstract analysis (°ËÆ£À¶»°) 19¡Ý125
T. Hida¡§Brownian motion (ÃÝÃæÌÐÉ×) 36¡Ý285
E. Hille¡§Functional analysis and semigroups (µÈÅĹ̺î) 02¡Ý372
E. Hille¡§Analytic function theory µ, ¶ ¡¡
¡¡(°ì¾¾¡¡¿®) 14¡Ý123
P. J. Hilton¡§An introduction to homotopy theory (¹â¶¶ÅµÂç) 08¡Ý056
P. J. Hilton-S. Wylie¡§Homology theory, an
introduction to algebraic topology
(Ãæ²¬¡¡Ì)················································· 14¡Ý121
F. Hirzebruch¡§Garben—–und Cohomologie—–theorie
(°ì¾¾¡¡¿®) 09¡Ý194
F. Hirzebruch¡§Neue topologische Methoden
in der algebraischen Geometrie (ÃæÌîÌÐÃË) 10¡Ý193
G. Hochschild¡§¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The structure of Lie groups (¿ÜÆ£¿¿¼ù) 18¡Ý249
G. Hochschild¡§Introductions to affine ¡¡¡¡algebraic groups (Åڰ湬ͺ) 26¡Ý187
G. P. Hochschild¡§Basic theory of algebraic
groups and Lie algebras
(°¤Éô±Ñ°ì¡¤Åڰ湬ͺ¡¤ÃÝÆâ¸÷¹°)················································· 35¡Ý182
K. Hoffman¡§Banach spaces of analytic
functions ¡¡¡¡(ÏÂÅĽß¢) 17¡Ý115
K. H. Hofmann¡¤P. S. Mostert¡§Elements of compact
semigroups (Åļ¹§¹Ô) 21¡Ý313
R. Honsberger¡§Mathematical gems¡¤µ¡¤¶ ¡¡
¡¡(°ì¾¾¡¡¿®) 30¡Ý166
Lars Hörmander¡§An introduction to complex
analysis in several variables (³á¸¶ÔáÆó) 19¡Ý060
L. Hörmander¡§The analysis of linear
partial differential operators µ, ¶ (ËÌÅÄ¡¡¶Ñ) 38¡Ý090
Wu Yi Hsiang¡§Cohomology theory of topological transformation groups (µÈÅÄÊþ¹¥)················································· 30¡Ý372
S. T. Hu¡§Homotopy theory (ÅçÅÄ¿®É×) 13¡Ý184
S. T. Hu¡§Homology theory (Çò´ä¸¬°ì) 20¡Ý122
L. K. Hua¡§Additive
Primzahltheorie ¡¡¡¡(εÂô¼þͺ) 16¡Ý179
L. K. Hua¡§Abschätzungen von Exponentialsummen und ihre Anwendung in den Zahlentheorie (εÂô¼þͺ)················································· 16¡Ý179
Hua Loo Keng (²ÚÍå¹®) & Wang Yuan (²¦¸µ)¡§Applications of number
theory to numerical analysis (¼¯Ìî¡¡·ò)················································· 35¡Ý187
J. F. P. Hudson¡§Piecewise linear
topology ¡¡¡¡(Ê¡ÅÄÀ¬»Ò) 23¡Ý075
M. Hukuhara-T. Kimura-Mme T.
Matuda¡§Équations
différentielles ordinaires du premier order dans le champ complexe (ã·Æ£Íø×½)··································· 13¡Ý186
J. E. Humphreys¡§Linear algebraic groups ¡¡ ¡¡(°¤Éô±Ñ°ì¡¤Åڰ湬ͺ¡¤ÃÝÆâ¸÷¹°) 35¡Ý182
W. Hurewicz-H. Wallman¡§Dimension theory ¡¡¡¡(¿¹Åĵª°ì¡¦Æþ¹¾¾¼Æó) 02¡Ý183
D. Husemoller¡§Fibre bundles (ÎëÌÚ¼£É×) 21¡Ý067
D. Husemoller¡§Fibre bundles¡¤2nd ed. ¡¡¡¡(ËÌÅÄÂÙɧ) 29¡Ý176
Roudolph C. Hwa-Vigdor L. Teplitz¡§Homology Feynman Integrals (¹ÓÌÚÉÔÆóÍÎ) 20¡Ý183
H. Komatsu (ed.)¡§Hyperfunctions and pseudodifferential
equations (»°ÎØÅ¯Æó) 26¡Ý281
I. A. Ibragimov-Y. A. Rozanov¡§Gaussian ¡¡random processes (ÌîËܵ×É×) 33¡Ý377
S. Iitaka¡§Algebraic geometry (°ÂƣůºÈ) 40¡Ý272
N. Ikeda, S. Watanabe¡§Stochastic differential
equations and diffusion processes ¡¡ ¡¡(ËÜÈø¡¡¼Â)················································· 35¡Ý381
M. Iri¡§Network¡¤flow¡¤transportation and ¡¡scheduling (°ì¾¾¡¡¿®) 23¡Ý070
K. Itô¡§Foundations of stochastic
differential equations in infinite dimensional spaces ¡¡¡¡(ÅÏÊÕ¿®»°)················································· 39¡Ý182
K. Itô and H. P. McKean¡¤Jr.¡§Diffusion processes and their sample paths (ÅÏÊÕ¿®»°)················································· 23¡Ý068
N. Jacobson¡§The theory of rings ¡¡ ¡¡(ÀõÌî·¼»°) 03¡Ý058
N. Jacobson¡§Structure of rings (ÅÔÃÞ½ÓϺ) 09¡Ý253
N. Jacobson¡§PI–algebras (ÂçËÙÀµ¹¬)· 30¡Ý286
H. Jacquet¡¤R. P. Langlands¡§Automorphic forms on (ÀîÃæÀëÌÀ) 23¡Ý316
James P. Jans¡§Rings and homology
¡¡¡¡(ÂÀÅáÀî¹°¹¬) 17¡Ý179
M. Jarnicki, P. Pflug¡§Invariant Distances and
Metrics in Complex Analysis (ÅìÀîÏÂÉ×) 48¡Ý436
B. Jawerth & M. Milman¡§Extrapolation theory with applications (Á¾ÉÛÀîÂóÌé) 46¡Ý366
T. J. Jech¡§The axiom of choice (ÄÍÅÄ¿®¹â) 28¡Ý285
T. Jech¡§Set theory (ÆñÇÈ´°¼¤)·········· 33¡Ý188
T. Jech¡§Multiple forcing (²ÃÌÐÀÅÉ×)·· 40¡Ý277
A. Jeffrey and T. Kawahara¡§Asymptotic methods in
nonlinear wave theory (À¾ËÜÉÒɧ) 36¡Ý374
C. U. Jensen & H. Lenzing¡§Model Theoretic Algebra (ÄÚ°æÌÀ¿Í) 43¡Ý186
K. K. Jensen, K. Thomsen¡§Elements of -Theory (²ÆÌÜÍø°ì) 48¡Ý217
P. E. T. Jorgensen¡§Operators and representation theory (´ßËܾ½¹§) 41¡Ý278
R. V. Kadison-J. R. Ringrose¡§Fundamentals of the theory
of operator algebras Vol. I ¡¡¡¡(ÃݺêÀµÆ»)················································· 37¡Ý180
J.–P. Kahane¡§Some random series of functions (Ãö¼í¡¡Ø¹) 24¡Ý156
J. P. Kahne¡§Some random series of
functions ¡¡¡¡(º´Æ£¡¡Ã³) 40¡Ý276
G. Kallianpur¡§Stochastic filtering
theory ¡¡ ¡¡(ÈôÅÄÉð¹¬) 34¡Ý184
A. Kanamori¡§The Higher Infinite
¡¡¡¡(Þ¼Ìî¡¡¾») 48¡Ý085
S. Kaneyuki¡§Homogeneous bounded domains
and Siegel domains (»ù¶Ì½©Íº) 36¡Ý370
L. V. Kantorovich-V. I. Krylov¡§Approximate methods of
higher analysis (°æ¾åÀµÍº) 16¡Ý176
I. Kaplansky¡§Infinite abelian groups
¡¡¡¡(°ËÆ£¡¡¾º) 08¡Ý124
I. Kaplansky¡§An introduction to
differential algebra (¾®Ìî¡¡¹§) 10¡Ý056
S. Karlin¡§A first course in stochastic
processes ¡¡¡¡(ÇòÈø¹±µÈ) 21¡Ý157
T. Kato¡§Perturbation theory for
linear operators
(ÁýÅĵ×Ìï) 21¡Ý148
T. Kato¡§A short introduction to
perturbation theory for linear operators (˾·î¡¡À¶) 36¡Ý375
N. Katz, B. Mazur¡§Arithmetic Moduli of Elliptic curves (É´À¥Ê¸Ç·) 44¡Ý370
Y. Katznelson¡§An introduction to harmonic
analysis (Ãö¼í¡¡Ø¹) 21¡Ý308
T. Kawata¡§Fourier analysis of
stochastic processes (²ÏÌî·Éͺ) 38¡Ý092
S. Kechris¡§Classical Descriptive Set
Theory,¡¡With 34 Illustrations (ÅÄÃæ¾°É×) 50¡Ý108
H. J. Keisler¡§Model theory for infinitary
logic ¡¡¡¡(Ëܶ¶¿®µÁ) 26¡Ý191
J. L. Kelley¡§General topology (ĹÅĽá°ì) 08¡Ý183
J. G. KemenyÊÔ¡§New directions in
mathematics ¡¡¡¡(»³¼¼Äê¹Ô) 16¡Ý171
J. G. Kemeny¡¤J. L. Snell¡¤A. W. Knapp¡§Denumerable Markov chains¡¡¡¡¡¡¡¡¡¡¡¡¡¡ (ÅÏÊÕ¼÷É×)················································· 21¡Ý076
G. R. Kempf¡§Complex Abelian Varieties
and Theta Functions (ϪÊöÌÐÌÀ) 46¡Ý373
C. E. Kenig¡§Harmonic Analysis Techniques
for Second Order Elliptic Boundary Value Problems (¶â»Ò¡¡À¿)················································· 48¡Ý105
B. Kerékjártó¡§Les fondaments de la géométrie
¡¡¡¡(ÊÔ½¸Éô) 19¡Ý056
A. N. Khovanskii (P. Wynn±ÑÌõ)¡§¡¡¡¡¡¡¡¡¡¡¡¡¡¡The application of continued
fractions and their generalizations to problems in approximation theory (°ì¾¾¡¡¿®) 20¡Ý116
µª¡¡¹¸»Ò¡¤J. Myhill¡¤R. VesleyÊÔ¡§Intuitionism ¡¡and proof theory (Çò°æ¸Å´õÃË) 24¡Ý245
A. A. Kirillov¡§Elements of the theory of
representations (³á¸¶¡¡µ£) 38¡Ý283
W. Klingenberg¡§Eine Vorlesung über
Differentialgeometrie (²®¾å¹É°ì) 28¡Ý379
Klingenberg¡§Lectures on closed
geodesics
(ÅÄÃæ¡¡¼Â) 32¡Ý089
Anthony W. Knapp¡§Representation theory of
semisimple groups —–An overview based on
examples—– (À¾»³¡¡µý)················································· 44¡Ý183
A. W. Knapp¡§Lie Groups, Lie Algebras,
and Cohomology (ÆâÆ£¡¡Áï) 44¡Ý280
D. E. Knuth¡§Surreal numbers (ÍÂô¡¡À¿) 31¡Ý279
S. Kobayashi¡§Hyperbolic manifold and
holomorphic mappings (Èõ¸ýÄ÷°ì) 24¡Ý347
S. Kobayashi¡§Transformation groups in
differential geometry (Íî¹çÂî»ÍϺ) 27¡Ý188
S. Kobayashi¡¤K. Nomizu¡§Foundations of differential
geometry (²®¾å¹É°ì) 23¡Ý308
S. Kobayashi, H. Wu, C. Horst¡§Complex differential geometry
(ËþÞ¼½Ó¼ù)
38¡Ý187
N. Koblitz¡§–adic numbers,
–adic analysis, and zeta–functions (¿¹ÅĹ¯É×) 37¡Ý378
P. Koosis¡§The logarithmic integral µ¡¦¶ ¡¡
¡¡(ÃæÏ©µ®É§) 48¡Ý207
C. Kosniowski¡§Actions of finite abelian
groups ¡¡¡¡(ÆâÅÄÉú°ì) 30¡Ý375
J. L. Koszul¡§Exposés sur les espaces ¡¡¡¡homogénes symétriques (¾¾ÅçÍ¿»°) 14¡Ý124
Hans-Joachim Kowalsky¡§Topological Spaces ¡¡¡¡(ÃÝÇ·Æâ¡¡æû) 17¡Ý182
I. Kra¡§Automorphic forms and
Kleinian groups ¡¡¡¡(»³ËÜÇîÉ×) 28¡Ý182
S. G. Krein¡§Linear differential
equations in Banach space (ÂçÆâ¡¡Ãé) 23¡Ý315
H. Kumano–go¡§Pseudo–differential
operators ¡¡¡¡(°æÀî¡¡Ëþ) 35¡Ý274
Kunen¡§Set theory¡½An introduction to
independence proofs (²ÖÂôÀµ½ã) 37¡Ý283
K. Kunen, J. E. Vaughan (eds. )¡§Handbook of set–theoretic
topology (¶ÌÌ°ì) 40¡Ý185
H. Kunita¡§Stochastic flows and
applications ¡¡¡¡(Æ£¸¶¡¡»Ê) 40¡Ý281
H. P. Künzi-A. PflugerÊÔ¡§Festband zum 70. Geburtstag
von Rolf Nevanlinna
(°ì¾¾¡¡¿®)················································· 20¡Ý189
C. Kuratowski¡§Topologie ¶ (¶áÆ£´ðµÈ) 05¡Ý196
K. Kuratowski¡§Topology, µ (¶áÆ£´ðµÈ) 20¡Ý123
S. KurodaÊÔ¡§The collected papers of
Teiji Takagi ¡¡¡¡(εÂô¼þͺ) 27¡Ý379
Yu. A. Kutoyants¡§Parameter estimation for
stochastic processes (°ð³ÀÀëÀ¸) 43¡Ý183
J. P. LaSalle-S. Lefschetz¡§International symposium on
nonlinear differential equations and nonlinear mechanics ¡¡¡¡¡¡(ÀêÉô¡¡¼Â)······································· 15¡Ý240
I. LakatosÊÔ¡§Problems in the philosophy
of mathematics (¼ÅÄ¡¡Á´) 21¡Ý229
C. Lanczos¡§Discourse on Fourier
series ¡¡¡¡(°ì¾¾¡¡¿®) 18¡Ý185
S. Lang¡§Introduction to algebraic
geometry ¡¡¡¡(¿¹Àî¡¡¼÷) 14¡Ý191
S. Lang¡§Introduction to differentiable
manifolds ¡¡¡¡(»Ö²ì¹ÀÆó) 18¡Ý187
S. Lang¡§Algebra (ÉþÉô¡¡¾¼)··············· 18¡Ý251
S. Lang¡§Rapport sur la cohomologie
des groupes ¡¡¡¡(ÉþÉô¡¡¾¼) 21¡Ý299
S. Lang¡§Cyclotomic fields (¹©Æ£°¦ÃÎ) 33¡Ý092
D. Laugwitz¡§Differentialgeometrie ¡¡¡¡(ĹÌî¡¡Àµ) 14¡Ý125
D. Laugwitz¡§Differentialgeometrie
¡¡
¡¡(¾®È«¼éÀ¸) 17¡Ý249
M. A. Lavrent'ev¡§Variational methods for
boundary value problems for systems of elliptic equations (µÚÀî¹ÂÀϺ)················································· 16¡Ý254
L. Le Cam¡§Asymptotic Methods in
Statistical Decision Theory (»³ÅĺîÂÀϺ¡¦ÎëÌÚ¡¡Éð) 43¡Ý184
J. LeechÊÔ¡§Computational problems in
abstract algebra (Åļ¹§¹Ô) 23¡Ý309
E. L. Lehmann¡§Theory of Point
Estimation ¡¡ ¡¡(»°ÅÄÀ²µÁ) 41¡Ý282
J. Lehner¡§Discontinuous group and
automorphic functions (º¬ËÜÀº»Ê) 18¡Ý120
G. M. Leibowitz¡§Lectures on complex function
algebras (ÉÙ»³¡¡½ß) 28¡Ý173
C. G. Lekkerkerker¡§Geometry of numbers ¡¡ ¡¡(Æâ»³»°Ïº) 23¡Ý313
P. Lévy¡§Processus stochastiques et
mouvement Brownien (°ËÆ£¡¡À¶) 05¡Ý114
André Lichnerowicz¡§Théorie globale des
connexions et des groupes d'holonomie
¡¡¡¡(Èø´Ø±Ñ¼ù)················································· 11¡Ý055
Séminaire Sophus Lie (1954/1955)¡§Théorie des algèbres de Lie,
Topologie des groupes de Lie ¡¡¡¡(¿ù±º¸÷É×)················································· 11¡Ý053
D. V. Lindley¡§Introduction to probability
and statistics (ÃÝÆâ¡¡·¼) 17¡Ý254
Yu. V. Linnik (S. J. Taylor±ÑÌõ)¡§Decomposition of probability
distributions (²ÏÅÄεÉ×) 21¡Ý069
J. L. Lions¡§Equations différentielles opérationnels
et problèmes aux limites ¡¡¡¡(ÅÄÊÕ¹¾ë)················································· 15¡Ý243
J. L. Lions¡§Contrôle optimal de systèmes
gouvernés par des équations aux dérivées partielles (÷㲬ˮÉ×)················································· 22¡Ý154
J. L. Lions and E. Magenes¡§Problèmes aux limites non
homogènes et applications ¡¡¡¡¡¡µ¡¤¶ (Æ£¸¶ÂçÊå)················································· 23¡Ý158
J. E. Littlewood¡§Lecture on the theory of
function ¡¡¡¡(Y. K. ) 02¡Ý368
C. L. Liu¡§Introduction to
combinatorial mathematics (°ì¾¾¡¡¿®) 21¡Ý304
C. Livingston¡§Knot Theory, The Carus
Mathematical Monographs Number 24 ¡¡¡¡¡¡(ÃæÀ¾¹¯¹ä)················································· 50¡Ý219
G. G. Lorentz¡§Approximation of functions ¡¡¡¡¡¡(ÎëÌÚµÁÌé) 23¡Ý157
Jan Lukasiewicz¡§Elements of mathematical
logic ¡¡¡¡(ÃæÂ¼¹¬»ÍϺ) 17¡Ý248
Y. L. Luke¡§The special functions and
their approximations (°ì¾¾¡¡¿®) 22¡Ý317
A. T. Lundell and S. Weingram¡§The topology ¡¡¡¡of CW complexes (µÜºê¡¡¹¨) 24¡Ý343
G. Lusztig¡§Introduction to Quantum
Groups ¡¡¡¡(ëºê½ÓÇ·) 47¡Ý199
W. Maak¡§Fastperiodische
Funktionen ¡¡ ¡¡(±§Âô¹°Ê¸) 04¡Ý252
N. Madras, G. Slade¡§The Self–Avoiding Walk ¡¡¡¡(ÉþÉôůÌï) 47¡Ý311
W. Magnus-F. Oberhettinger-R. P. Soni¡§Formulas and theorems for
the special functions of mathematical physics¡¡¡¡¡¡¡¡¡¡ (°ì¾¾¡¡¿®)··································· 20¡Ý061
B. Malgrange¡§Ideals of differentiable
functions¡¡¡¡ (´ä¶¶Î¼Êå) 21¡Ý153
J. Malitz¡§Introduction to mathematical
logic ¡¡¡¡(Ëܶ¶¿®µÁ) 33¡Ý188
B. B. Mandelbrot¡§Fractals¡§forms chance¡¤and dimension (°ì¾¾¡¡¿®) 30¡Ý169
Jerome H. Manheim¡§The genesis of point set topology
(²ÏÌî°Ë»°Ïº) 17¡Ý181
H. B. MannÊÔ¡§Error correcting codes ¡¡ ¡¡(°ì¾¾¡¡¿®) 22¡Ý232
K. V. Mardia, J. T. Kent, J. M. Bibby¡§Multivariate analysis (ÁáÀî¡¡µ£) 34¡Ý280
A. W. Marshall-I. Olkin¡§Inequalities¡§Theory of majorization and
its applications
(°ÂÆ£¡¡µ£)················································· 33¡Ý375
V. P. Maslov¡§The complex WKB Method for
Nonlinear Equations µ. Linear Theory ¡¡¡¡(Æâ»³¹¯°ì)················································· 50¡Ý100
M. Matsuda¡§First order algebraic
differential equations (À¾²¬·¼Æó) 37¡Ý086
J.–L. Mauclaire¡§Intégration et théorie des
nombres (³ø¹¾Å¯Ï¯) 40¡Ý275
G. Maury et J. Raynaud¡§Ordres maximaux au sens de
K. Asano (´ÝÎӱѽÓ) 34¡Ý090
D. McDuff, D. Salamon¡§–holomorphic Curves and Quantum Cohomology (¹âÁÒ¡¡¼ù) 50¡Ý104
M. Métivier, J. Pellaumail¡§Stochastic¡¡integration ¡¡¡¡(±öÅİ¿®) 37¡Ý188
P.–A. Meyer¡§Probabilités et potentiel¡¨¡¡Probability and potentials (ËÜÈø¡¡¼Â) 21¡Ý156
Y. Meyer¡§Ondelettes et Opérateurs µ, ¶, · ¡¡¡¡(Æâ»³ÌÀ¿Í) 45¡Ý183
S. G. Mikhlin¡§Variational methods in
mathematical physics (°ì¾¾¡¡¿®) 17¡Ý253
S. G. Mikhlin¡§Multidimentional singular
integrals and integral equations (·§¥Î¶¿½à)················································· 19¡Ý123
J. Mikusiński¡§Operational calculus
¡¡¡¡(µÈÅĹ̺î) 12¡Ý190
J. Milnor¡§Morse theory (ÄÍËÜÍÛÂÀϺ) 21¡Ý317
J. W. Milnor¡§Lectures on the –cobordism theorem (²ÃÆ£½½µÈ) 22¡Ý234
J. Milnor¡§Singular points of complex
hypersurfaces (¿ÛˬΩͺ) 22¡Ý314
C. Miranda¡§Partial differential
equations of elliptic type (²¼ÅÄÀáϺ) 24¡Ý253
Barry Mitchell¡§Theory of categories ¡¡¡¡(±óÆ£ÀÅÃË) 20¡Ý249
C. J. Mode¡§Multitype branching
processes ¡¡
¡¡(Æ£¶ÊůϺ) 26¡Ý079
J. D. Monk with R. Bonnet (ed.)¡§Handbook of Boolean Algebras
(Þ¼Ìî¡¡¾»)
43¡Ý179
C. C. Moore, C. Schochet¡§Global Analysis On Foliated
Spaces (²ÆÌÜÍø°ì) 41¡Ý280
M. Mores¡§Topological methods in the
theory of functions of a complex variable
(¾¾ËÜÉÒ»°)················································· 04¡Ý115
F. Morgan¡§Geometric Measure
Theory. A
Beginner's Guide (ÃæÆâ¿¸÷) 46¡Ý363
Dietrich Morgenstern¡§Einführung in die Wahrscheinlichkeitsrechnung und
mathematische Statistik (ÃÝÆâ¡¡·¼)················································· 17¡Ý126
C. B. Morrey¡§Multiple integrals in the
calculus of variations (¼¾¾¼÷±ä) 24¡Ý159
Y. N. Moschovakis¡§Elementary induction on
abstract structures (Ê¡»³¡¡¹î) 29¡Ý187
Y. N. Moschovakis¡§Descriptive set theory ¡¡ ¡¡(°ÂÅÄ¡¡Ë) 38¡Ý087
R. E. Mosher and M. C. Tangora¡§Cohomology operations and
applications in homotopy theory (ÅçÅÄ¿®É×)················································· 24¡Ý154
P. S. Mostert¡§Proeedings of the conference
on transformation groups (Â翹±Ñ¼ù) 21¡Ý315
A. Mostowski-M. Stark¡§Introduction to higher
algebra (°ì¾¾¡¡¿®) 16¡Ý186
D. Mumford¡§Geometric invariant
theory ¡¡ ¡¡(»³ÅÄ¡¡¹À) 19¡Ý185
D. Mumford¡§Tata lectures on theta
I ¡¡¡¡ (¾®ÀôÀµÆó) 36¡Ý369
D. Mumford¡§Tata lectures on theta
II
¡¡¡¡(±öÅÄÎ´ÈæÏ¤) 40¡Ý090
S. B. Nadler, Jr.¡§Continuum Theory ¡¡ ¡¡(¾®»³¡¡¹¸) 46¡Ý376
Jun–iti Nagata¡§Modern dimension theory ¡¡¡¡(»ù¶ÌÇ·¹¨) 18¡Ý121
J. Nagata¡§Modern dimension theory
¡¡¡¡(ÄÅÅĸ÷°ì) 38¡Ý188
M. Nagata¡§Local rings (À®ÅÄÀµÍº)····· 16¡Ý181
B. Sz. Nagy¡§Spektraldarstellung linearer
transformationen des Hilbertschen Raumes ¡¡¡¡(µÈÅĹ̺î)················································· 03¡Ý247
Y. Nakagami-M. Takesaki¡§Duality for crossed products
of von Neumann algebras
¡¡ ¡¡(²¡À½Å)················································· 36¡Ý371
M. Namba¡§Geometry of projective
algebraic curves (º£µÈÍΰì) 39¡Ý371
M. Namik Ogustöreli¡§Time–lag control systems ¡¡¡¡(¿ù»³¾»Ê¿) 19¡Ý119
R. Narasimhan¡§Introduction to the theory
of analytic spaces (°ì¾¾¡¡¿®) 20¡Ý190
I. P. Natanson¡§Theorie der Funktionen einer
reellen Varänderlichen (´Ý»³µ·»ÍϺ) 07¡Ý176
E. Nelson¡§Tensor anaysis (ÌðÌî·òÂÀϺ) 21¡Ý309
V. V. Nemytskii-V. V. Stepanov¡§Qualitative theory of
differential equations ¡¡¡¡¡¡¡¡¡¡¡¡(±º¡¡ÂÀϺ)················································· 14¡Ý057
R. Nevanlinna¡§Uniformisierung (ÅļÆóϺ) 06¡Ý246
R. Nevanlinna¾¡§Analytic functions
¡¡¡¡(°ì¾¾¡¡¿®) 12¡Ý247
M. H. A. Newman¡§Elements of the topology of
plane sets of points (µµÃ«½Ó»Ê) 05¡Ý188
J. C. C. Nitsche¡§Lectures on minimal
surfaces, vol. 1 (¾®°ë¿¼¹¬) 44¡Ý092
K. Nomizu¡§Lie groups and differential
geometry ¡¡¡¡(´äËÙĹ·Ä) 11¡Ý248
D. G. Northcott¡§An introduction to ¡¡homological algebra (ÅÔÃÞ½ÓϺ) 14¡Ý190
D. G. Northcott¡§Finite free resolutions ¡¡¡¡(µÌ¡¡Äçͺ) 30¡Ý092
D. G. Northcott¡§Affine sets and affine
groups ¡¡¡¡(°¤Éô±Ñ°ì¡¤Åڰ湬ͺ¡¤ÃÝÆâ¸÷¹°) 35¡Ý182
K. Noshiro¡§Cluster sets (¹õÅÄ¡¡Àµ)·· 13¡Ý188
T. Oda¡§Periods of Hilbert modular
surfaces ¡¡ ¡¡(ÂÀÅIJí¸Ê) 38¡Ý088
T. Oda¡§Lectures on torus embeddings
and applications (ÅÚ¶¶¹¨¹¯) 36¡Ý373
T. Oda¡§Convex Bodies and Algebraic
Geometry ¡¡¡¡(ÃæÂ¼¡¡°ê) 41¡Ý184
J. Ogawa¡§Statistical theory of the
analysis of experimental designe (Àаæ¸ãϺ) 29¡Ý377
K. Oka¡§Sur les fonctions
analytiques de plusieurs variables (²Ï¹çÎɰìϺ) 15¡Ý235
Okonnk-Schneider-Spindler¡§Vector bundles on complex projective spaces (´Ý»³Àµ¼ù) 37¡Ý090
T. Okubo¡§Differential geometry
¡¡¡¡(ÌðÌî·òÂÀϺ) 40¡Ý371
F. Oort¡§Commutative group
schemes
¡¡¡¡(ËÜÅÄ¡¡Ê¿¡¦µÜÀ¾Àµµ¹) 20¡Ý252
O. Ore¡§The Four–color problem (°ì¾¾¡¡¿®) 20¡Ý244
P. Orlik & H. Terao¡§Arrangements of Hyperplanes
(ÆüÈæ¹§Ç·) 46¡Ý368
M. OttoÊÔ¡§Mathematiker über die
Mathematik ¡¡¡¡(°ì¾¾¡¡¿®) 28¡Ý378
PWNÊÔ¡§Recent developments in
general relativity (ÃÓÅÄÊöÉ×) 15¡Ý189
R. S. Palais¡§Foundations of Global
nonlinear analysis (Â翹±Ñ¼ù) 26¡Ý087
Carol Parikh¡§The Unreal Life of Oscar Zariski¡¡¡¡¡¡(¾¾Â¼±ÑÇ·) 44¡Ý368
K. R. Parthasarathy¡§Probability measures on
metric spaces (²¬ÉôÌ÷·û) 21¡Ý311
G. K. Pedersen¡§–algebras and their automorphism groups (¹â°æÇî»Ê) 33¡Ý284
R. Péter¡§Rekursive Funktionen (ÀÖ¡¡ÀÝÌé) 08¡Ý058
V. V. Petrov¡§Sums of independent random
variables (À¶¿åÎɰì) 30¡Ý088
A. Pietsch¡§Nuclear locally convex
spaces ¡¡ ¡¡(¹â¼¿²ì»Ò) 28¡Ý180
J. D. PincusÊÔ¡§Summer institute on spectral
theory and statistical mechanics
(°ì¾¾¡¡¿®)················································· 19¡Ý191
V. A. Pliss¡§Nonlocal problems of the
theory of oscillations (ã·Æ£Íø×½) 20¡Ý119
C. Pommerenke¡§Univalent functions ¡¡¡¡(·¦ÅIJ¾°) 29¡Ý178
L. S. Pontryagin-V. G. Boltyanskii-R.
V. Gamkrelidze-E. F. Mishchenko¡§The mathematical theory of optimal
processes ¡¡¡¡(¾®ÎÓε°ì) ·································· 16¡Ý125
M. M. Postnikov¡§Foundations of Galois theory
¡¡¡¡(²ÏÅķɵÁ) 14¡Ý254
K. Prachar¡§Primzahlverteilung (εÂô¼þͺ) 16¡Ý179
Proceedings of the United States -
Japan seminar in differential geometry (»Ö²ì¹ÀÆó) 19¡Ý118
C. Procesi¡§Rings with polynomial
identities ¡¡ ¡¡(ÂçËÙÀµ¹¬) 30¡Ý286
P. H. Rabinowitz¡§Minimax methods in critical
point theory with applications to differential equtions (ÅÄÃæÏ±Ê)················································· 46¡Ý182
H. Rademacher¡§Topics in analytic number
theory (»°°æ¹§Èþ) 28¡Ý175
H. Radjavi¡¤P. Rosenthal¡§Invariant subspaces ¡¡¡¡(ËÌÌî¹§°ì) 28¡Ý278
A. Ralston-H. S. WilfÊÔ¡§Mathematical methods for
digital computers 2 (°ì¾¾¡¡¿®) 20¡Ý243
R. M. Range¡§Holomorphic Functions and
Integral Representations in Several Complex Variables (°Â㸬»°)················································· 48¡Ý088
M. M. Rao, Z. D. Ren¡§Theory of Orlicz Spaces ¡¡¡¡(ËÌ¡¡¹ÃË) 46¡Ý090
H. Rasiowa¡§An algebraic approach to non–classical
logic (¾®Ìî´²Úò) 29¡Ý375
H. E. Rauch and H. M. Farkas¡§Theta functions with
applications to Riemann surfaces ¡¡ ¡¡(²ÃÆ£¿òͺ)················································· 28¡Ý280
M. Reed-B. Simon¡§Methods of modern
mathematical physics, µ-¸
(¹õÅÄÀ®½Ó)················································· 37¡Ý181
R.–D. Reiss¡§Approximate Distributions of
¡¡¡¡Order
Statistics ¡½ With Applications to Nonparametric
Statistics ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡(¾¾Æì¡¡µ¬)··································· 50¡Ý216
A. Rényi¡§Wahrscheinlichkeitsrechnung
mit einem Anhang über Informationstheorie ¡¡¡¡ (¹ñÂôÀ¶Åµ)················································· 15¡Ý127
G.
Ringel¡§Map
color theorem (°ì¾¾¡¡¿®) 28¡Ý174
J. Riordan¡§An introduction to
combinatorial analysis (»³Ëܹ¬°ì) 12¡Ý186
B. D. Ripley¡§Statistical Inference for
Spatial Processes (´ÖÀ¥¡¡ÌÐ) 47¡Ý306
J. F. Ritt¡§Differential algebra (±üÀî¸÷ÂÀϺ) 03¡Ý117
A. P. Robertson and W. J. Robertson¡§Topological vector spaces (´Ø¿ô²òÀϸ¦µæ²ñ) 21¡Ý074
T. Robertson, F. T. Wright, R. L.
Dykstra¡§ Order Restricted Statistical Inference
(ºûÞ¼¾Í°ì)················································· 49¡Ý329
B. Rodin and L. Sario¡§Principal functions ¡¡¡¡(µÈÅĵªÍº) 21¡Ý237
L. Rodino¡§Linear Partial Difrerential Operators in Gevrey Spaces (¿¹ËÜ˧§) 48¡Ý102
H. Rogers¡¤Jr. ¡§Theory of recursive
functions ¡¡and effective computability (ÅÄÃæ¾°É×) 22¡Ý155
L. C. G. Rogers-D. Williams¡§Diffusions, ¡¡Markov Processes, and
Martingales, ¡¡¡¡vol.2: Itô Calculus (»³ÅĽÓͺ)················································· 41¡Ý375
C. P. Rourke and B. J. Sanderson¡§Introduction to piecewise–linear
topology (Ê¡¸¶¿¿Æó) 26¡Ý286
G. G. Roussas¡§Contiguity of probability
measures; Some application in statistics ¡¡¡¡ (ÌøÀî¡¡ô¡)················································· 26¡Ý280
H. L. Royden¡§Real analysis (°ì¾¾¡¡¿®) 15¡Ý251
H. Rubin & J. Rubin¡§Equivalents of ¡¡¡¡axiom of choice, ¶ (ÆñÇÈ´°¼¤) 39¡Ý285
Walter Rudin¡§Fourier analysis on
groups ¡¡ ¡¡(ÌðÌîÌмù) 20¡Ý059
W. Rudin¡§Function theory in the unit
ball of ¡¡¡¡(³á¸¶ÔáÆó) 34¡Ý186
D. Ruelle¡§Thermodynamic formalism ¡¡ ¡¡(ÂçÌîÂÙ¼£Ïº) 32¡Ý376
T. L. SaatyÊÔ¡§Lectures on modern
mathematics ¡¡µ, ¶ (°ì¾¾¡¡¿®) 17¡Ý052
T. L. SaatyÊÔ¡§Lectures on modern
mathematics¡¤· (°ì¾¾¡¡¿®) 21¡Ý159
G. E. Sacks¡§Saturated model theory
¡¡¡¡(Ëܶ¶¿®µÁ) 27¡Ý284
S. Sakai¡§–algebras and
–algebras
¡¡¡¡(¸æ±àÀ¸Á±¾°) 26¡Ý370
S. Saks-A. Zygmund¡§Analytic functions ¡¡ ¡¡(¾®·¡¡¡·û) 07¡Ý122
G. Samorodnitsky, M. S. Taqqu¡§Stable non–Gaussian Random
Processes ¡½ Stochastic Models with Infinite
Variance ¡¡¡¡¡¡¡¡¡¡¡¡¡¡(ÃÝÃæÌÐÉ×)··································· 48¡Ý108
P. Samuel¡§Algèbre locale (±ÊÅÄ²íµ¹)· 07¡Ý049
P. Samuel¡§Méthodes d'algèbre abstraite
en géométrie algébrique (±ÊÅÄ²íµ¹) 09¡Ý055
G. Sansone and R. Conti¡§Non–linear differential
equations (µÈÂôÂÀϺ) 17¡Ý186
L. Sario and K. Oikawa¡§Capacity functions ¡¡¡¡ (¼ò°æ¡¡ÎÉ) 26¡Ý081
L. Sario-M. Nakai¡§Classification theory of
Riemann surfaces (Æ£²Èζͺ) 26¡Ý181
Sarnak¡§Some Applications of Modular
Forms ¡¡¡¡(¾®»³¿®Ìé) 50¡Ý319
M. Schechter¡§Principles of functional
analysis ¡¡¡¡(µíÅç¾ÈÉ×) 26¡Ý182
L. I. Schiff¡§Quantum mechanics ¡¡¡¡¡¡¡¡¡¡¡¡¡¡(¾®ÎÓ¡¡Ì) 03¡Ý120
M. Schiffer-D. C. Spencer¡§Functionals of finite
Riemann surfaces (°ì¾¾¡¡¿®) 07¡Ý172
O. F. G. Schilling¡§The theory of
valuations ¡¡¡¡(°ðÍձɼ¡) 05¡Ý119
W. Schmeidler¡§Lineare Operatoren im
Hilbertschen Raum (»°Â¼À¬Íº) 08¡Ý055
Th. Schneider¡§Einführung in die
transzendenten Zahlen (ÂçÀ®ÀáÉ×) 15¡Ý184
H. Scholz und G. Hasenjaeger¡§Grundzüge der mathematischen Logik (ÀÖ¡¡ÀÝÌé) 15¡Ý127
J. A. Schouten¡§Tensor analysis for
physicists ¡¡¡¡(´äÅĵÁ°ì) 05¡Ý253
J. A. Schouten¡§Ricci–Calculus. An
introduction to tensor analysis and its geometrical applications (ÌðÌî·òÂÀϺ)················································· 07¡Ý124
H. Schubert¡§Topologie, eine Einführung ¡¡ ¡¡(¾®ÎÓÄç°ì) 17¡Ý057
K. Schütte¡§Proof theory (¹âÌîÆ»É×)·· 30¡Ý371
L. Schwartz¡§Théorie des
distributions ¡¡ ¡¡(ÃÝÇ·Æâ¡¡æû¡¦ÎÓ¡¡°ìÆ») 03¡Ý113
L. Schwartz¡§Théorie der distributions ¶ ¡¡
¡¡(ÎÓ¡¡°ìÆ») 04¡Ý187
J. T. SchwartzÊÔ¡§Mathematical aspects of
computer science (Æ£ÌîÀº°ì) 21¡Ý302
Scientific American, 1964ǯ9·î¹æ ¡¡¡¡(ÀÖ¡¡ÀÝÌé) 17¡Ý173
W. R. Scott¡§Group theory (°ð³À¿®É×) 17¡Ý177
B. Segre¡§Prodromi di Geometria
Algebrica ¡¡ ¡¡(¿åÌʸ) 26¡Ý274
J.–P. Serre¡§Groupes algébriques et corps
de classes (ÍÇÏ¡¡Å¯) 12¡Ý177
J.–P. Serre¡§Corps locaux (ËÜÅÄ¡¡Ê¿)· 18¡Ý190
J.–P. Serre¡§Lie algebras and Lie
groups ¡¡¡¡(¿ûÌͺ) 19¡Ý116
J.–P. Serre¡§Algèbres de Lie semi–simples
complexes (¿ûÌͺ) 20¡Ý118
J. P. Serre¡§Abelian –adic representation and elliptic curves (¿¹ÅĹ¯É×) 22¡Ý239
J.–P. Serre¡§Represéntations linéares des
¡¡groupes
finis (µÈÅÄÃιÔ) 27¡Ý287
I. R. Shafarevich¡§Basic algebraic
geometry ¡¡ ¡¡(ÃöÀ¥Çî»Ê) 31¡Ý277
C. E. Shannon-J. McCarthy¡§Automata studies ¡¡¡¡(ÀÖ¡¡ÀÝÌé) 10¡Ý049
C. E. Shannon-W. Weaver¡§The mathematical theory of
communication (¹ñÂôÀ¶Åµ) 04¡Ý189
J. H. Shapiro¡§Composition Operators and
Classical Function Theory (¹âÌÚ·¼¹Ô) 50¡Ý330
O. ShishaÊÔ¡§Inequalities (°ì¾¾¡¡¿®) 21¡Ý159
G. R. Shorack, J. A. Wellner¡§Empirical ¡¡Processes with Applications
to Statistics
(°Â·Ý½Åͺ)················································· 46¡Ý364
M. A. Shubin¡§Pseudo–differential
operators ¡¡and spectal theory (ĹÀ¥Æ»¹°) 40¡Ý278
C. L. Siegel¡§Transcendental numbers ¡¡ ¡¡(¹õÅÄÀ®¾¡) 03¡Ý189
C. L. Siegel¡§Verlesungen über Himmelsmechanik
(ÀÄÌÚ¿®¶Ä) 11¡Ý057
C. L. Siegel¡§Zur Reduktionstheorie
quadratischer Formen (ÊÔ½¸Éô) 15¡Ý191
C. L. Siegel¡§Lectures on advanced
analytic number theory (ËÜÅÄ¡¡Ê¿) 16¡Ý174
C. L. Siegel¡§Symplectic geometry ¡¡¡¡(°Ë¸¶¿®°ìϺ) 17¡Ý180
W. Sierpiński¡§Elementary theory of numbers
¡¡¡¡(¼¯Ìî¡¡·ò) 17¡Ý176
Joseph H. Silverman¡§Advanced Topics in the
Arithmetic of Elliptic Curves (ÃæÂ¼Å¯ÃË) 49¡Ý434
I. Singer¡§Cea mai bună approximare în
spaţii vectoriale normate prin elemente din spaţii vectoriale (°ì¾¾¡¡¿®)················································· 21¡Ý073
Y.–T. Siu¡§Lectures on
Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics (ËþÞ¼½Ó¼ù)················································· 40¡Ý370
L. A. Skornyakov¡§Complemented modular lattice
and regular rings (±«µÜ°ìϺ) 18¡Ý119
I. N. Sneddon¡§Mixed boundary value
problems in potential theory (¾®¾¾Í¦ºî) 21¡Ý152
C. D. Sogge¡§Fourier Integrals in
Classical Analysis (¿ùËÜ¡¡½¼) 50¡Ý098
Edwin H. Spanier¡§Algebraic topology ¡¡¡¡(Ìî¼ÂÙÉÒ) 20¡Ý246
T. A. Springer¡§Linear algebraic groups ¡¡ ¡¡(°¤Éô±Ñ°ì¡¤Åڰ湬ͺ¡¤ÃÝÆâ¸÷¹°) 35¡Ý182
R. P. Stanley¡§Enumerative Combinatrics,
Volume µ (ÆüÈæ¹§Ç·) 44¡Ý089
N. Steenrod¡§The topology of fibre
bundles ¡¡¡¡(ÀÅ´ÖÎɼ¡) 03¡Ý248
N. E. Steenrod¡§Cohomology operations ¡¡ ¡¡(²£ÅİìϺ) 15¡Ý187
M. L. Stein-W. D. Munro¡§Computer programming (Ìîºê¾¼¹°) 17¡Ý059
E. M. Stein and G. Weiss¡§Introduction to ¡¡¡¡Fourier analysis on
Euclidean spaces ¡¡ (ÌðÌîÌмù)················································· 28¡Ý183
E. M. Stein¡§Harmonic Analysis; Real–Variable
Methods, Orthogonality, and Oscillatory Integrals (µÜÃϾ½É§)················································· 47¡Ý421
S. Sternberg¡§Lectures on differential
geometry ¡¡¡¡(²®¾å¹É°ì) 20¡Ý063
M. I. Stoka¡§Geometrie Integrală (·ªÅÄ¡¡Ì) 21¡Ý155
E. L. Stout¡§The theory of uniform
algebras ¡¡
¡¡(é®Åĸø»°) 28¡Ý178
H. Strasser¡§Mathematical Theory of
Statistics ¡¡¡¡(»³ÅĺîÂÀϺ¡¦ÎëÌÚ¡¡Éð) 43¡Ý184
S. Stratila and L. Zsido¡§Lectures on von Neumann
algebras (±ÑÌõ¡§S. Teleman) ¡¡ (¹ÓÌÚÉÔÆóÍÎ)················································· 32¡Ý378
D. W. Stroock-S. R. S. Varadhan¡§ Multidimensional
diffusion processes (¹ñÅÄ¡¡´²)················································· 34¡Ý282
M. Sugiura¡§Unitary representations and
harmonic analysis (Ê¿°æ¡¡Éð) 36¡Ý182
R. G. Swan¡§Algebraic –theory
¡¡(ÂçÎÓÃéÉ×) 23¡Ý072
M. E. Sweedler¡§Hopf algebras (ÉþÉô¡¡¾¼) 24¡Ý078
R. M. Switzer¡§Algebraic topology–homotopy
and homology (¾®ÎÓÄç°ì) 30¡Ý370
M. Takesaki¡§Tomita's theory of modular Hilbert algebras and its
applications
(ÃÝÇ·Æâ¡¡æû)················································· 26¡Ý375
M. Takesaki¡§Theory of operator algebras µ ¡¡ ¡¡(ÀÆÆ£ÏÂÇ·) 33¡Ý281
G. Takeuti and W. M. Zaring¡§Axiomatic set theory (¼ÄÅļ÷°ì) 26¡Ý283
G. Takeuti¡§Two applications of logic to
mathematics (Ȭ¿ùËþÍø»Ò) 36¡Ý283
G. Takeuti¡§Proof theory, (second
edition) ¡¡¡¡(ÁÒÅÄÎáÆóϯ) 40¡Ý368
K. Takeuchi, H. Yanai, B. N. Mukherjee¡§The foundations of
multivariate analysis ¡¡¡¡¡¡ (ÇòÁÒÚö¹°)················································· 37¡Ý091
A. Tarski¡§Undecidable theories (ÀÖ¡¡ÀÝÌé) 06¡Ý239
M. E. Taylor¡§Pseudodifferential Operators
and Nonlinear PDE, Progress in Mathematics, vol. 100 (»³ºê¾»ÃË)················································· 50¡Ý325
R. Temam¡§Navier-Stokes equations
¡¡¡¡(¿¹ËܹÀ»Ò) 32¡Ý378
S. Thangavelu¡§Lectures on Hermite and
Laguerre Expansions (´ª¿Ó͵°ì) 50¡Ý105
J. A. Thorpe¡§Elementary topics in
differential geometry (Èø´Ø±Ñ¼ù) 33¡Ý087
A. F. Timan¡§Theory of approximation of
functions of a real variable ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Ê½§Ç·Æâ¸»°ìϺ¡Ë················································· 17¡Ý051
E. C. Titchmarsh¡§The theory of the Riemann
zeta–function (εÂô¼þͺ) 04¡Ý253
E. C. Titchmarsh¡§Eigenfunction expansions
associated with second–order differential ¡¡equations, Part ¶ (²ÃÆ£ÉÒÉ×)················································· 12¡Ý188
E. Torgersen¡§Comparison of Statistical
Experiments (Áð´Ö»þÉð) 44¡Ý363
L. F. Tóth¡§Regular figures (°ì¾¾¡¡¿®) 17¡Ý060
F. G. Tricomi¡§Vorlesungen über
Orthogonalreihen (²ÏÅÄεÉ×) 08¡Ý125
H. Triebel¡§Interpolation theory,
function spaces, differential operators (¼¾¾¼÷±ä) 33¡Ý083
H. Triebel¡§Fourier analysis and
function spaces¡¡¡¡(¼¾¾¼÷±ä) 36¡Ý180
H. Triebel¡§Spaces of Besov¡¾Hardy¡¾Sobolev type (¼¾¾¼÷±ä) 36¡Ý180
A. S. Troelstra¡§Lectures on linear
logic
¡¡¡¡(¾®Ìî´²Úò) 46¡Ý371
A. J. Tromba¡§Teichmüller Theory in
Riemannian Geometry (±§ÅÄÀîÀ¿°ì) 46¡Ý374
C. Truesdell¡§An essay toward a unified
theory of special functions, based upon the functional equation ¡¡ ¡¡ ¡¡(¼Æ³ÀÏ»°Ïº) 05¡Ý051
M. Tsuji¡§Potential theory in modern
function theory (µÚÀî¹ÂÀϺ) 14¡Ý050
K. Ueno¡§Classification theory of
algebraic varieties and compact complex spaces ¡¡ ¡¡ ¡¡(Æ£ÌÚ¡¡ÌÀ)················································· 36¡Ý379
M. Urabe¡§Nonlinear autonomous
oscillations¡¤analytical theory (±§ÌîÍøÍº) 24¡Ý341
B. van der Pole-H. Bremmer¡§Operational calculus based
on the two–sided Laplace integral (°ËÆ£¡¡À¶)················································· 11¡Ý116
B. L. van der Waerden¡§Science awakening ¡¡¡¡(S. I.) 07¡Ý182
Varchenko, V. I. Arnold, Gusein-Zade¡§Singularities of differentiable
maps, vol. µ ¡¡ ¡¡ ¡¡(Ê¡ÅÄÂóÀ¸)················································· 38¡Ý377
J. von Neumann-O. Morgenstern¡§Theory of games and economic
behavior¡¡¡¡¡¡¡¡¡¡¡¡¡¡ (´Ø¡¡¹±µÁ)················································· 03¡Ý185
A. Wald¡§Statistical decision
functions ¡¡¡¡(µÜÂô¸÷°ì) 04¡Ý049
C. T. C. Wall¡§Surgery on compact
manifold ¡¡¡¡(¾¾¸µ½Å§) 26¡Ý083
A. H. Wallace¡§An introduction to algebraic
topology (¾®¾¾½æÏº) 15¡Ý187
C. Warner¡§Harmonic analysis on
semi-simple Lie groups, µ¡¤¶ (²¬ËÜÀ¶¶¿) 27¡Ý189
Washington¡§Introduction to cyclotomic
Fields ¡¡¡¡(¾®¾¾·¼°ì) 41¡Ý092
S. Watanabe¡§Lectures on stochastic
differential equations and Malliavin calculus ¡¡ (½ÅÀî°ìϺ)················································· 38¡Ý375
W. C. Waterhouse¡§Introduction to affine group
schemes (°¤Éô±Ñ°ì¡¤Åڰ湬ͺ¡¤ÃÝÆâ¸÷¹°) 35¡Ý182
A. Weil¡§Foundations of algebraic
geometry ¡¡
¡¡(¾®ÀôÀµÆó) 02¡Ý082
A. Weil¡§Sur les courbes algébriques
et les variétés qui s'en déduisent (°æÁð½à°ì) 03¡Ý061
A. Weil¡§Variétés abéliennes et
courbes algébriques (°æÁð½à°ì) 03¡Ý061
A. Weil¡§Theorie der Kählerschen
Mannigfaltigkeiten (½©·î¹¯É×) 06¡Ý121
André Weil¡§Introduction à l'étude des
variétés kählériennes (¿¹Àî¡¡¼÷) 13¡Ý122
Weil¡§Basic number theory (ÂΩ¹±Íº) 24¡Ý345
A. Weil¡§Number theory (ÂΩ¹±Íº)··· 38¡Ý374
André Weil¡§Souvenirs
d'apprentissage (The
apparenticeship of a Mathematician) ¡¡¡¡(Áð¾ì¸øË®)················································· 44¡Ý367
H. Weyl¡§Die Idee der Riemannschen Fläche
¡¡¡¡(º´¡¹ÌÚ½¨Ê桦ÅļÆóϺ¡¦°ì¾¾¡¡¿®) 09¡Ý125
H. Weyl-F. J. Weyl¡§Meromorphic functions and
analytic curves (¾¾ËÜÉÒ»°) 04¡Ý114
G. W. Whitehead¡§Elements of homotopy ¡¡theory (ºûÈøÌ÷Ìé) 32¡Ý377
D. T. Whiteside¡§The mathematical works of ¡¡Isaac Newton 1 (ÃæÂ¼¹¬»ÍϺ) 18¡Ý116
G. T. Whyburn¡§Topological analysis
¡¡¡¡(°ì¾¾¡¡¿®) 11¡Ý123
Wielandt¡§The theory of permutation
groups ¡¡¡¡(±Ê°æ¡¡¼£) 18¡Ý055
S. Wiggins¡§Normally Hyperbolic
Invariant Manifolds in Dynamical Systems ¡¡ (Ô¢ÉÜ´²»Ê)················································· 50¡Ý434
T. J. Willmore¡§An introduction to
differential geometry (ÌðÌî·òÂÀϺ) 12¡Ý249
A. Wintner¡§The analytical foundations
of ¡¡celestial
mechanics (±º¡¡ÂÀϺ) 03¡Ý119
P. Wolf¡§Algebraische Theorie der
Galoisschen Algebren (ÁýÅľ¡É§) 10¡Ý058
N. M. J. Woodhouse¡§Geometric ¡¡¡¡Quantization (»°¾å·òÂÀϺ) 47¡Ý315
M. Woodroofe¡§Nonlinear renewal theory in
sequential analysis (¹â¶¶¡¡°ì) 37¡Ý084
K. Yano¡§Groups of transformations in
generalized spaces (º´¡¹ÌÚ½ÅÉ×) 02¡Ý188
K. Yano¡§The theory of Lie
derivatives and its applications (¹â¶¶¹±Ïº) 09¡Ý129
Kentaro Yano¡§Differential geometry on ¡¡complex and almost complex
spaces ¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ (º´¡¹ÌÚ½ÅÉ×)················································· 19¡Ý117
K. Yano-S. Bochner¡§Curvature and Betti numbers (°ì¾¾¡¡¿®) 06¡Ý052
M. Yoshida (µÈÅÄÀµ¾Ï)¡§Fuchsian Differential
Equations with Special Emphasis on the Gauss-Schwarz theory (»ûÅĽÓÌÀ)················································· 42¡Ý090
T. Yoshino¡§Introduction to Operator
Theory ¡¡ ¡¡(¸ÅÅŧǷ) 48¡Ý081
T. Yoshizawa¡§Stability theory by
Liapunov's¡¡ second method (·ª¸¶¸÷¿®) 24¡Ý340
K. Yosida¡§Functional analysis (»³Ãæ¡¡·ò) 21¡Ý234
A. C. Zaanen¡§Integration (°ËÆ£À¶»°) 22¡Ý233
O. Zariski¡§Introduction to the problem
of minimal models in the theory of algebraic surfaces (±ÊÅÄ²íµ¹)················································· 12¡Ý127
O. Zariski-P. Samuel¡§Commutative algebra, ¡¡¡¡µ, ¶ (±ÊÅÄ²íµ¹) 13¡Ý182
O. Zariski¡§Algebraic surfaces (Èӹ⡡ÌÐ) 26¡Ý088
A. Zygmund¡§Trigonometric series ¡¡¡¡(ÌðÌîÌмù) 14¡Ý187
§¯. §Á. §£§Ú§Ý§Ö§ß§Ü§Ú§ß¡§§³§á§Ö§è§Ú§Ñ§Ý§î§ß§í§Ö §æ§å§ß§Ü§è§Ú§Ú §Ú §ä§Ö§à§â§Ú§ñ §á§â§Ö§Õ§ã§ä§Ñ§Ó§Ý§Ö§ß§Ú§Û §Ô§â§å§á§á ¡¡¡¡¡¡¡¡¡¡¡¡(¿ù±º¸÷É×)················································· 19¡Ý255
§ª. §®. §¤§Ö§Ý§î§æ§Ñ§ß§Õ-§®. §ª. §¤§â§Ñ§Ö§Ó-§¯. §Á. §£§Ú§Ý§Ö§ß§Ü§Ú§ß¡§§ª§ß§ä§Ö§Ô§â§Ñ§Ý§î§ß§Ñ§ñ §Ô§Ö§ã§Þ§Ö§ä§â§Ú§ñ §Ú §ã§Ó§ñ§Ù§Ñ§ß§ß§í§Ö §ã §ß§Ö§Û §Ó§à§á§â§à§ã§í §ä§Ö§à§â§Ú§Û §á§â§Ö§Õ§ã§ä§Ñ§Ó§Ý§Ö§ß§Ú§Û ¡¡ (äÇϿɧ¾) 16¡Ý247
§ª. §®. §¤§Ö§Ý§î§æ§Ñ§ß§Õ-§¤. §¦. §º§Ú§Ý§à§Ó¡§§°§Ò§à§Ò§ê§Ö§ß§ß§í§Ö §æ§å§ß§Ü§è§Ú§Ú (I. M.
Gelfand-G. E. Šilov¡§Ä¶È¡¿ôÏÀ) (»³Ãæ¡¡·ò¡¦ÀÞ¸¶ÌÀÉס¦¹â¼¹¬ÃË¡¦ÅòÀõ¿²ì»Ò¡¦ÎëÌÚ°ìÀµ¡¦¾¾¸¶¡¡Ì)······ 12¡Ý179
§ª. §®. §¤§Ö§Ý§î§æ§Ñ§ß§Õ-§¯. §Á. §£§Ú§Ý§Ö§ß§Ü§Ú§ß¡§§¯§Ö§Ü§à§ä§à§â§í§Ö §á§â§Ú§Þ§Ö§ß§Ö§ß§Ú§ñ §Ô§Ñ§â§Þ§à§ß§Ú§é§Ö§ã§Ü§à§Ô§à §Ñ§ß§Ñ§Ý§Ú§Ù§Ñ. §°§ã§ß§Ñ§ê§×§ß§ß§í§Ö
§¤§Ú§Ý§î§Ò§Ö§â§ä§Ó§í §á§â§à§ã§ä§â§Ñ§ß§ã§ä§Ó§Ñ¡¡¡¡¡¡(ÀÞ¸¶ÌÀÉ×)······ 14¡Ý246
§¤. §®. §¤§à§Ý§å§Ù§Ú§ß¡§§¤§Ö§à§Þ§Ö§ä§â§Ú§é§Ö§ã§Ü§Ñ§ñ §ä§Ö§à§â§Ú§ñ
§æ§å§ß§Ü§è§Ú§Û §Ü§à§Þ§á§Ý§Ö§Ü§ã§ß§à§Ô§à
§á§Ö§â§Ö§Þ§Ö§ß§ß§à§Ô§à ¡¡ (µ×ÊÝÃéͺ)················································· 06¡Ý243
§¦. §¢. §¥§í§ß§Ü§Ú§ß¡§§°§ã§ß§à§Ó§Ñ§ß§Ú§ñ §ä§Ö§à§â§Ú§Ú ¡¡¡¡§®§Ñ§â§Ü§à§Ó§ã§Ü§Ú§ç §á§â§à§è§Ö§ã§ã§à§Ó (º´Æ£·ò°ì) 14¡Ý055
§¦. §¢. §¥§í§ß§Ü§Ú§ß¡§§®§Ñ§â§Ü§à§Ó§ã§Ü§Ú§Ö §á§â§à§è§Ö§ã§ã§í ¡¡¡¡(º´Æ£·ò°ì) 19¡Ý126
§¡. §¯. §¬§à§Ý§Þ§à§Ô§à§â§à§Ó-§³. §£. §¶§à§Þ§Ú§ß¡§§¿§Ý§Ö§Þ§Ö§ß§ä§â§í §ä§Ö§à§â§Ú§Ú §æ§å§ß§Ü§è§Ú§Û §Ú §æ§å§ß§Ü§è§Ú§à§ß§Ñ§Ý §î §ß§à§Ô§à §Ñ§ß§Ñ§Ý§Ú§Ù§Ñ (È¡¿ôÏÀ¤ÈÈ¡¿ô²òÀϤδðÁÃ) ¡¡ (°ËÆ£À¶»°)··································· 15¡Ý124
§¡. §¤. §¬§å§â§à§ê¡§§§Ö§Ü§è§Ú§Ú §á§à §à§Ò§ê§Ö§Û §Ñ§Ý§Ô§Ö§Ò§â§Ö ¡¡¡¡(ÉþÉô¡¡¾¼) 18¡Ý057
§°. §¡. §§Ñ§Õ§î§Ø§Ö§ß§ã§Ü§Ñ§ñ-§¯. §¯. §µ§â§Ñ§Ý§î§è§Ö§Ó§Ñ¡§¡¡§§Ú§ß§Ö§Û§ß§í§Ö §Ú §Ü§Ó§Ñ§Ù§Ú§Ý§Ú§ß§Ö§Û§ß§í§Ö §å§â§Ñ§Ó§ß§Ö§ß§Ú§ñ §ï§Ý§Ý§Ú§á§ä§Ú§é§Ö§ã§Ü§à§Ô§à §ä§Ú§á§Ñ (ÁðÌî¡¡¾°)················································· 18¡Ý061
§². §º. §§Ú§á§è§Ö§â, §¡. §¯. §º§Ú§â§ñ§Ö§Ó¡§§´§Ö§à§â§Ú§ñ §Þ§Ñ§â§ä§Ú§ß§Ô§Ñ§Ý§à§Ó (ݤÅÄÇÜÇ·) 41¡Ý277
§¦. §³. §§ñ§á§Ú§ß¡§§±§à§Ý§å§Ô§â§å§á§á§í (°æ´ØÀ¶»Ö) 14¡Ý060
§¤. §ª. §®§Ñ§â§é§å§Ü¡§§®§Ö§ä§à§Õ§í §Ó§í§é§Ú§ã§Ý§Ú§ä§Ö§Ý§î§ß§à§Û §Þ§Ñ§ä§Ö§Þ§Ñ§ä§Ú§Ü§Ú (ÌîÌÚãÉ×) 30¡Ý085
§£. §±. §®§Ñ§ã§Ý§Ù§Ó¡§§´§Ö§à§â§Ú§ñ §Ó§à§Ù§Þ§å§ê§Ö§ß§Ú §Û §Ú§Ñ§ã§Ú§Þ§á§ä§à§ä§Ú§é§Ö§ã§Ü§Ú§Ö §Þ§Ö§ä§à§Õ§í ¡¡ (µÈÀî¡¡ÆØ)················································· 27¡Ý186
§®. §¡. §¯§Ñ§Û§Þ§Ñ§â§Ü¡§§¯§à§â§Þ§Ú§â§à§Ó§Ñ§ß§ß§í§Ö §Ü§à§Ý§î§è§Ñ (M. A.
Neumark¡§¥Î¥ë¥à´Ä) (»°Â¼À¬Íº) 11¡Ý060
§®. §¡. §¯§Ñ§Û§Þ§Ñ§â§Ü¡§§§Ú§ß§Ö§Û§ß§í§Ö §á§â§Ö§Õ§ã§ä§Ñ§Ó§Ý§Ö§ß§Ú§ñ §Ô§â§å§á§á§í §§à§â§Ö§ß§è§Ñ (¿ù±º¸÷É×) 18¡Ý189
§. §³. §±§à§ß§ä§â§ñ§Ô§Ú§ß¡§§°§Ò§í§Ü§ß§à§Ó§Ö§ß§ß§í§Ö §Õ§Ú§æ§æ§Ö§â§Ö§ß§è§Ú§Ñ§Ý§î§ß§í§Ö §å§â§Ñ§Ó§ß§Ö§ß§Ú§ñ ¡¡ (¹õÅÄÀ®½Ó)················································· 17¡Ý121
§¢. §¡. §³§Ö§Ó§Ñ§ã§ä§î§ñ§ß§à§Ó¡§§£§Ö§ä§Ó§ñ§ê§Ú§Ö§ã§ñ §á§â§à§è§Ö§ã§ã§í ¡¡¡¡(²ÏÄÅ¡¡À¶) 27¡Ý280
§¡. §£. §³§Ü§à§â§à§ç§à§Õ¡§§³§Ý§å§é§Ñ§Û§ß§í§Ö §á§â§à§è§Ö§ã§ã§í §ã §ß§Ö§Ù§Ñ§Ó§Ú§ã§Ú§Þ§í§Þ§Ú §á§â§Ú§â§Ñ§ê§Ö§ß§Ú§ñ§Þ§Ú ¡¡ (»³Î¤¡¡¿¿)················································· 41¡Ý091
§¢. §¡. §¶§å§Ü§ã¡§§´§Ö§à§â§Ú§ñ §Ñ§ß§Ñ§Ý§Ú§é§Ö§ã§Ü§Ú§ç §æ§å§ß§Ü§è§Ú§Û §Þ§ß§à§Ô§Ú§ç §Ü§à§Þ§á§Ý§Ö§Ü§ã§ß§í§ç §á§Ö§â§Ö§Þ§Ö§ß§ß§í§ç ¡¡¡¡¡¡(°ì¾¾¡¡¿®)················································· 08¡Ý246
§ª. §². §º§Ñ§æ§Ñ§â§Ö§Ó§Ú§é¾¡§§¡§Ý§Ô§Ö§á§â§Ñ§Ú§é§Ö§ã§Ü§Ö§á§à §Ó§Ö§â§ç§ß§à§ã§ä§Ú (Èӹ⡡ÌÐ) 19¡Ý057
¥½Ï¢É´²Ê¼Åµ¶ÉÊÔ¡§§®§Ñ§ä§Ö§Þ§Ñ§ä§Ú§é§Ö§ã§Ü§Ñ§ñ §ï§ß§è§Ú§Ü§Ý§à§á§Ö§Õ§Ú§ñ,
1 (§¡-§¤)(°ì¾¾¡¡¿®) 30¡Ý374